
COMS 4995-8: Advanced Algorithms (Spring’21) Feb 09, 2021

Lecture 9: Nearest Neighbor Search: Locality Sensitive Hashing

Instructor: Alex Andoni Scribes: Haoran Pu, Rodolfo Raimundo

1 Review: Lecture 8

Last time we discussed the problem of Nearest Neighbor Search using as a foundation for our possible

solutions the Johnson-Lindenstrauss lemma from Lecture 7.

We then started discussing solutions for the c-ANN problem as described below:

Definition 1. [c-approximation of r-near neighbor, c-ANN]: Given c > 1, r > 0, data set D ⊂ Rd, n =

|D|, build a data structure on D such that it can answer given q ∈ Rd:

• if there exists
∗
p ∈ D such that || ∗p− q|| ≤ r, then report p ∈ D such that ||p− q|| ≤ c · r

(in case of randomized algorithms, p is reported with probability at least 90% per point)

• if doesn’t exist
∗
p ∈ D such that || ∗p− q|| ≤ r, then may or may not report anything

After a solution adopting dimension reduction, we concluded that in some cases it is enough to use a

sketching map instead of a proper dimension reducing map1. We then followed with a solution using

sketching for `1 and the Hamming space2.

2 Solution 1: KOR Theorem and Sketching

As described in the Section 1, last time we stated a theorem that could lead us to a possible solution of

the c-ANN problem using sketching. Now, we will prove the theorem and better define the solution. We

should first recall the Kushilevitz-Ostrovsky-Rabani Theorem:

Theorem 2. [Kushilevitz-Ostrovsky-Rabani]: Fix d ≥ 1 and c = 1 +O(ε). Then, there exists θ > 0 such

that ∀r ≥ 1 there exists a distribution ϕ over {0, 1}d defined as ϕ : {0, 1}d → {0, 1}k, with k = O(logn
ε2

)

such that:

• if ‖p− q‖ ≤ r then Pr[‖ϕ(p)− ϕ(q)‖ ≤ θk] ≥ 1− 1
n3

• if ‖p− q‖ > cr then Pr[‖ϕ(p)− ϕ(q)‖ > θk] ≥ 1− 1
n3

As one should notice, the distribution ϕ acts like a dimension reduction mapping for a scale r.

We can now proceed with the proof of the theorem as follows:

1Scribe 8: Section 3
2Scribe 8: Section 4

1

Proof. First, we should define ϕ as transformation in the given space, thus we will have that ϕ takes the

following form:

ϕ(p) =


· · · u1 · · ·
· · · u2 · · ·
...

...
...

· · · ud · · ·

 ·

p1
p2
...

pd


The matrix M is defined such that for each ui we have that Pr[ui = 1] = α = 1

2r and we have that the

size of the matrix M of the transformation is d ∗ k with d and k as defined previously.

We should also remember that since we defined the mapping in {0, 1}d, we have that all operations are

in the Galois Field with modulo 2 (F2), hence, the sum operation behaves similarly to Exclusive OR (⊕).

Taking these properties into account, we can proceed with our proof.

For a vector p and a matrix M as defined above with vi = (ui1, u
i
2, . . . , u

u
d)3, we have:

ϕ(p) = (v1 · p, v1 · p, . . . , vk · p)

Now, for another vector q, since we have that (+) ≡ (⊕), we have:

‖ϕ(p)− ϕ(q)‖ =
k∑
i=1

1[vi · p 6= vi · q]

We can then take the expectation of such variables to prove our theorem.

E[‖ϕ(p)− ϕ(q)‖] = E

[
k∑
i=1

1[vi · p 6= vi · q]

]
= k ∗ Pr[vi · p 6= vi · q]

Further, we have:

Pr[vi · p 6= vi · q] = Pru [u · p 6= u · q]

= Pru

[
⊕di=1ui · pi 6= ⊕di=1ui · qi

]
= Pru

[
⊕di=1ui · (pi ⊕ qi) 6= 0

]
Since the operation Exclusive OR depends only on the coordinate, we have that the number of iterations

of i in which (pi ⊕ qi) = 1 is ‖p− q‖. Now, since we have established that each ui = 1 with probability
1
2r , we can then define the distribution of ui as follows:

• ui ∈ {0, 1} with probability 1
r = 2α.

• u1 = 0 with probability 1− 2α

3For the purpose of simplification, we will be dropping the superscript on ui, since the operations are analogous in every
column of M .

2

Therefore, u1 = 1 with probability α as defined previously, further, we have:

Pru

[
⊕di=1ui · (pi ⊕ qi) 6= 0

]
= 1− Pru

[
⊕di=1ui · (pi ⊕ qi) = 0

]
= 1− (1− 2α)‖p−q‖ − (1− (1− 2α)‖p−q‖) ∗ 1

2

=
1

2
(1− (1− 2α)‖p−q‖)

Now, we can look back at the cases described in the KOR Theorem:

1. if ‖p− 1‖ ≤ r, for (1− x) ≈ e−x for small x, we will have:

Pr[u · p 6= u · q] ≤ 1

2

(
1−

(
1− 2

2r

)r)
=

1

2
(1− e−1)

=
1

2
− 1

2e

2. if ‖p− 1‖ > cr, for c = 1 + ε, we will have:

Pr[u · p 6= u · q] ≤ 1

2

(
1−

(
1− 2

2r

)r∗(1+ε))
=

1

2
(1− e−1−ε)

=
1

2
(1− e−1(1− ε))

=
1

2
− 1

2e
+ ε ∗ 1

2e

We can now use the Chernoff Bound on each case, hence we will have:

1.

‖ϕ(p)− ϕ(q)‖ ≤ 1

2
− 1

2e
+

ε

4e

2.

‖ϕ(p)− ϕ(q)‖ ≤ 1

2
− 2

2e
+

ε

2e
− ε

5e

With probability σ ≥ 1− 1
n3 . Thus, we have concluded our proof.

As a result of our proof, we then arrive in the following corollary:

Corollary 3. There is a solution for a (1 + ε)−ANN in {0, 1}d using space O(n ∗ k) = O(n ∗ logn
ε2

) and

query time O(d ∗ k) +O(n ∗ logn
ε2

).

3

3 Solution 2: Compare Query Sketch & Dataset Sketch

The issue for Sol 1 is that the query time contains term O(n ln(n)), which is bad. And here we are trying

to reduce the n term.

p2

p3

p1

p4

...
...

S(p4)

S(p1)

S(p3)

S(p2)

S(q) q

Assumption 4. The sketch is {0, 1}k, which has 2k distinct values. This can be achieved by doing the

sketch in sol 1.

The key trick here is the sketch itself can be a pointer of an address for the sketch. This means, if we just

store all the possible answers in the address, upon computing the query sketch, we have O(1) retrieval

time and therefore preventing the n term. Here is an diagram showing the sketch-address trick.

0 1 10 11 100

φ(q) = 10

· · ·

And here the algorithm becomes:

Algorithm 1 Sketch Algorithm

Require: φ : {0, 1}d → {0, 1}k created by Sol 1, , a n × {0, 1}d dataset D, a 2k length array A and a

query q ∈ {0, 1}d. By J-L theorem, k ∈ O(ln(n)
ε2

)
1: for x ∈ D do
2: compute φ(x) and store it to address σ if it is an answer for query sketch σ
3: end for
4: compute query sketch φ(q)

return A[φ(q)]

3.1 Sketch Algorithm Space & Query Time Analysis

Space complexity is based one the size of the array A: 2k = 2O(
ln(n)

ε2
) = nO(1/ε2). This means, if one wants

to have better approximate (lower ε), the space complexity will be higher degree polynomial (ε = 0.05

will give O(n400)).

Query Time: Since retrieving answer is O(1), most works are done for computing φ(q), which is O(dk) =

O(d ln(n)
ε2

), please note that here we do eliminate the n term from Sol 1.

4

4 Solution 3: Locality Sensitivity Hashing (LSH) algorithm

The issue of Sol 2 is that eventually the space will be a higher order polynomial of n, which makes the

storage cost too large to be considered practical. The core idea is to sacrifice some query time (still under

linear) while keeping space close linear as well. And this can be achieved by the application of Locality

Sensitivity Hashing (LSH). Such hashing function has the property that, if two points are closed in their

space, then the hash of those two points shall have high probability under the same bucket and vice versa.

Here is an example show the expected behavior of locality sensitive hashing function.

Definition 5. Fix r, c > 0, family H of h : Rd → U ,where U is countable set, is called (r, cr, P1, P2)-LSH

if ∀p, q ∈ Rd, ||p− q|| ≤ r ⇒ P (h(p) = h(q)) ≥ P1, and ||p− q|| ≥ cr ⇒ P (h(p) = h(q)) ≤ P2

The understanding of this algorithm is quite similar with K-Mean problem where the differences are 1):

U is independent of dataset D, and 2): unlike K matters in K-Mean problem, we don’t care about the

cardinally of U . And the algorithm becomes:

Algorithm 2 LSH Algorithm

Require: A (r, cr, P1, P2)-LSH hash function h, a dictionary data structure V , and query q
1: for x ∈ D do
2: Prepossess h(x) and store it in V
3: end for
4: for p ∈ V (h(q)) do
5: compute ||p− q|| and return p if ||p− q|| ≤ cr
6: end for

In future lecture we will show such algorithm has query time O(nρ) ≤ O(n1) and space close to O(n)

4.1 (r, cr, 1, 1
n
) - LSH Correctness & Performance Analysis

Here lets do some best case scenario and use the best LSH we can imagine to see the upper bound of the

performance. Since ||p − q|| ≤ r =⇒ P (h(p) = h(q)) = 1, the bucket must have the correct answer if

such answer exists. And for expectation, we will compute its expectation, since the data is in dim d:

E(
∑

x∈V (h(q))

Query(x)) ≤ dE(

n∑
i=1

Q(x)I(x ∈ V (h(q)))) ≤ d× n× cP2 ∈ O(d)

Here Query(·) means query for entire vector, Q(·) means query for one coordinate, and c is computation

constant between two numbers.

5

4.2 Impossibility of (r, cr, 1, 1
n
) - LSH

TL;DR: if exists, P1 = 1 will enforce h has only one bucket, which contradicts the P2 requirement.

Although the performance analysis is promising, such thing is over optimistic and just mathematically

impossible. Here is a gist of how such thing cannot be possible in R1. (You can alter interval (a−r, a+r)

into volume in higher dimensions to show the generic impossibility as well)

Claim 6. LSH - (r, cr, 1, 1n) does not exist for R1

Proof. We will prove it by contradiction and assume such thing exists.

Fix value a and r, we know: ∀x ∈ (a− r, a+ r), h(x) = h(a).

By using induction, this implies, for any natural number n ∈ N, if x ∈ (a−nr, a+nr), then h(a) = h(x).

Recall Archimedes theorem, for any m > 0, there exists n ∈ N such that n ≥ m−a
r .

This means, ∀x ∈ R1, there exists a natural number n ∈ N such that

x ∈ (a− nr, a+ nr) and so h(x) = h(a).

This means we have only one bucket and therefore

∀x such that if ||x− a|| ≥ cr, P (h(x) = h(a)) = 1 > 1
n for n > 1.

This contradicts the assumption that ||x− a|| ≥ cr, P (h(x) = h(a)) ≤ P2 = 1
n .

Given the contradiction, we hereby show our assumption is false and therefore such thing

does not exist.

And such impossibility implies P1 must be strictly less than 1, which will be discussed in next lecture.

6

