
COMS 4995-8: Advanced Algorithms (Spring’21) Feb 02, 2021

Lecture 7: Dimension Reduction

Instructor: Alex Andoni Scribes: Zixuan Zhang, Linxiao Wu

1 Introduction:

This lecture mainly focuses on dimension reduction: Johnson-Linderstrauss Lemma and especially its

distributional version. Chi-squared distribution is introduced when there is a sum of Gaussian distributed

variables.

2 Last time Recap

Tug-of-War+ Algorithm

1. Frequency vector f ∈ Rn+

2. Goal: estimate F2 = ‖f‖22

3.

Algorithm 1: Tug-of-War+ Algorithm: repeat ToW k times, and take the average of the

estimators.

for i = 1, 2, . . . , k, where k = O( lgn
ε2

) do
pick rij ∈ {±1}, j ∈ [n]

sketch: Zi =
∑n

j=1 rijfj

end

return Estimator: Z := 1
k

∑k
i=1 Z

2
i

Better complexity

If probability fails ≤ δ where δ is some parameter.

Pr[Z2 = (1± ε)F2] ≥ 1− δ (1)

as long as k ≥ Ω(1
δ ·

1
ε2

)

Question to today’s lecture: Can we get better dependence on δ?

Claim 1. Yes, and in fact we can get k = O( lg(1/δ)
ε2

)
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3 Dimension Reduction

Definition 1:(Sketch function). For x ∈ Rn, a sketching function ϕ : Rn− > Rk is defined as:

ϕ(x) = σ · x =
1√
k

(
∑

σ1ixi,
∑

σ2ixi, ...,
∑

σkixi)

Note that σ ∈ Rk×n . We can use ϕ as an estimator of the L2 norm of its argument:

‖ϕ(f)‖22 = (1± ε)F2

Definition 2:(Linearity). If sketching function ϕ is linear, the following properties hold true:

ϕ(x± y) = ϕ(x)± ϕ(y)

3.1 Johnson-Lindenstrauss Lemma

Lemma: ∀ε > 0, there exists a linear, randomized function ϕ such that: ∀x, y ∈ Rn:

Pr[‖ϕ(x)− ϕ(x)‖ ∈ (1± ε)‖x− y‖] ≥ 1− e
−ε2k

9

Proof. Because ϕ is linear, we have ϕ(x)− ϕ(x) = ϕ(x− y). If we define z = x− y, the original lemma

is equivalent to:

Pr[‖ϕ(z)‖ ∈ (1± ε)‖z‖] ≥ 1− e
−ε2k

9

Note that there could be various implementation of ϕ:

• we could use Tug-of-war algorithm where σij = ±1

• ϕ maps Rn to a random k-dim linear subspace

• Similar to Tug-of-war but σij ∼ N(0, 1)

Recall: We proved the correctness of Tug-of-War by showing:

• E[σi] = 0

• E[σ2
i ] = 1

• E[σ4
i ] = 1

Here we adopt the third implementation, which also satisfies the above conditions. Before moving onto

the rest of the proof, we must understand the following properties:
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Definition(Stability Property):

n∑
i=1

gixi ∼ ‖x‖2 · a =
∑

x2
i · a; where a ∼ N(0, 1)

Property(Spherically Symmetric): For a vector b = (b1, b2, ..., bn) where bi ∼ N(0, 1) are i.i.d

pdf(b) = Π
1√
2π
e
−b2i
2 =

1

(2π)
n
2

e
−‖g‖22

2

Now, let’s rewrite the definition of ϕ:

ϕ(z) =
1√
k

(
∑
j

g1jzj ,
∑
j

g2jzj , ...,
∑
j

gkjzj)

=
1√
k

(‖z‖g(1), ‖z‖g(2), ..., ‖z‖g(k))

=
‖z‖√
k

(g(1), g(2), ..., g(k)) −→ k − dim Gaussian

‖ϕ(z)‖2 =
1

k

k∑
j=1

(g(j))2 · ‖z‖2

= ‖z‖2 1

k

∑
j

(g(j))2

= ‖z‖2χ2
k, where χ is the Chi square distribution

Fact:

P [χ2
k /∈ (1± ε)] ≤ e

−ε2k
9

Therefore, we have:

Pr[‖ϕ(z)‖ ∈ (1± ε)‖z‖] = 1− Pr[‖ϕ(z)‖ /∈ (1± ε)‖z‖]

≥ 1− e
−ε2k

9

Q.E.D

Corollary 2. (of Johnson-Linderstrauss ’84)

• fix N vectors x1, x2, . . . , xN ∈ Rn, pick Φ as in Johnson-Linderstrauss, with k = Θ( lgN
ε2

)

• PrΦ[∀i, j ∈ [N ], ‖Φxi − Φxj‖ = (1± ε) ‖xi − xj‖] ≥ 1− 1
N

Proof. fix k = 3·9·lnN
ε2

Then, by Johnson-Linderstrauss, ∀i, j ∈ [N ]

Pr[‖Φxi − Φxj‖ /∈ (1± ε) ‖xi − xj‖] ≤ e
−ε2k

9 =
1

N3
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Recall the union bound theorem

P

(⋃
i

Ai

)
≤
∑
i

P(Ai).

By Union bound over all pairs for i, j ∈ [N ]

PrΦ[∃i, j pair ∈ [N ], ‖Φxi − Φxj‖ /∈ (1± ε) ‖xi − xj‖] ≤
∑

i,j pairs

Pr[‖Φxi − Φxj‖ /∈ (1± ε) ‖xi − xj‖]

≤ N2 × 1

N3

=
1

N

Rephrase: For ∀ N vectors in Rn, can map them in to Rk, where k = O( lgN
ε2

) while preserving distance

1± ε

Dimension Reduction in Other space

Remark: Can we do the same for l1?

Recall that

ld1 : Rd where ‖x− y‖1 =

n∑
i=1

‖xi − yi‖

For l1: N vectors into lower dimension l1:

k = NΩ( 1
α

)

for α-approximation.
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