COMS 4995-8: Advanced Algorithms (Spring’21)

Lecture 7: Dimension Reduction

Feb 02, 2021

Instructor: Alex Andoni Scribes: Zizuan Zhang, Linziao Wu

1 Introduction:

This lecture mainly focuses on dimension reduction: Johnson-Linderstrauss Lemma and especially its
distributional version. Chi-squared distribution is introduced when there is a sum of Gaussian distributed

variables.

2 Last time Recap

Tug-of-War+ Algorithm
1. Frequency vector f € R’}
2. Goal: estimate Fy = || f||3

3.

Algorithm 1: Tug-of-War+ Algorithm: repeat ToW k times, and take the average of the

estimators.

for i =1,2,...,k, where k = O('4) do
pick 7; € {£1}, j € [n]
sketch: ZZ = Z?:l Tijfj

end

return Estimator: Z := % Zle zZ?

Better complexity

If probability fails < § where § is some parameter.

PriZz? =14 e)F]>1-96

as long as k > Q(% : }2)
Question to today’s lecture: Can we get better dependence on 07
Claim 1. Yes, and in fact we can get k = O(M)

€



3 Dimension Reduction

Definition 1:(Sketch function). For x € R", a sketching function ¢ : R"— > R¥ is defined as:

1
p@)=0-x=—"0 ouri,y  0%uli,.; Y Oili)
Vk
Note that o € R¥*™ . We can use ¢ as an estimator of the L2 norm of its argument:
le(HI3 = 1£e)F
Definition 2:(Linearity). If sketching function ¢ is linear, the following properties hold true:

p(xty)=p(x) £ 0(y)

3.1 Johnson-Lindenstrauss Lemma
Lemma: Ve > 0, there exists a linear, randomized function ¢ such that: Vx,y € R™:

—2k

Prllp(z) = p(@)ll € L £ e)lle —yl] > 1— e

Proof. Because ¢ is linear, we have p(z) — ¢(x) = p(x — y). If we define z = x — y, the original lemma
is equivalent to:

—2k

Prille(2)l € (T £ e)flz[]] =1 —e™

Note that there could be various implementation of ¢:
e we could use Tug-of-war algorithm where o;; = +1
e o maps R" to a random k-dim linear subspace
e Similar to Tug-of-war but o;; ~ N(0,1)

Recall: We proved the correctness of Tug-of-War by showing:

® E[O‘Z] =0
e E[o?]=1
e Eg}] =1

Here we adopt the third implementation, which also satisfies the above conditions. Before moving onto
the rest of the proof, we must understand the following properties:



Definition(Stability Property):
n
Zgix,; ~z2-a= me -a; where a ~ N(0,1)
i=1

Property(Spherically Symmetric): For a vector b = (b1, b, ..., b,) where b; ~ N(0,1) are i.i.d

pdf (b) =

1 —llgla
e 2n)

Now, let’s rewrite the definition of ¢:
1
= 7(2 gljzjaZQszja e ngjzj)
' J J
T(H 219, [12llg®, ..., 1]l

@) ...,g(k)) — k — dim Gaussian

ﬁ(g(l)ag
k
1
le(2)|1? = %Z )2 1217

P 1\21 3 (g9)?

j
= ||2||*x3, where x is the Chi square distribution

Fact:

—e2k

Plxi ¢ (1£e)]<e

Therefore, we have:

Prille(z)ll € £ e)llzll] =1 = Prlle()] ¢ (1 £ €)=]]

—e2k
>1—e" 9
Q.E.D
Corollary 2. (of Johnson-Linderstrauss ’84)
e fix N vectors x1,2o,...,zny € R™, pick ® as in Johnson-Linderstrauss, with k = @(lgeév)

e ProlVi,j € [N],||®x; — ®zj|| = (L te) |z —aj)] > 1— &

Proof. fix k= 739 N
Then, by Johnson—Linderstrauss, Vi, j € [N]

_e2
Pr{|®z; — ®z;l| ¢ (1 £¢€) [la; — a4l < e =



Recall the union bound theorem

P (U AZ»> < Z:P(Ai).

By Union bound over all pairs for i, j € [N]

Pro[3i. pair € [N, [®z; — ®a;]| ¢ (1) o — i) < S Prl|®a; — b ¢ (1L €) [l — ]

1,J pairs
1

2
<N XW

Rephrase: For V N vectors in R”, can map them in to R¥, where k = O(

1+e

Dimension Reduction in Other space

Remark: Can we do the same for {17
Recall that

n
19 R where ||z —y|l, = Z lzs — il

=1

For l1: N vectors into lower dimension [;:
k= NU3)

for a-approximation.

O]

1g€ ) while preserving distance




