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1 Perfect Hashing

1.1 Background

Recall that we have a dictionary that when given S ⊂ U is designed to answer the query ”is x ∈ S?”.

Furthermore, we define:

n , |S|

h : U → [m]

Cx = #y 6= x, y ∈ S s.t. h(x) = h(y)

C =
∑
x∈S

Cx

We claim that E [C] ≤ n2

m , which allows us to construct a hash table of size m = 4n2 where the size of

each bucket ≤ 1.

1.2 Definition

Theorem 1. Perfect hashing can always give us a data structure using O(n) space, O(1) query time,

O(n) construction time.

Proof. To prove the properties of perfect hashing, we combine ”standard” hashing with our 4n2 solution:
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We are given h : U → [m] where m ≈ n. A potential issue is that some buckets may be large (>> 1).

We measure their size with:

ni , size of bucket i =
∣∣h−1(i) ∩ S∣∣

From here, we add a second level to the hash table using the quadratic space solution. Our algorithm for

perfect hashing is as follows:

Algorithm 1: Constructing a Table with Perfect Hashing

Result: a data structure using O(n) space, O(1) query time, O(n) construction time

Pick some random h : U → [m] where m = n

for i ∈ m do
Build a second level hash function using hi : U →

[
4n2i
]

such that there are no collisions in

the second level (
[
4n2i
]
)

end

return the two-level hash table

Now, we must analyze this algorithm. Its correctness and consistent O(1) query time are immediate

by construction. The algorithm uses O(n) + O
(∑

i n
2
i

)
space, corresponding to the first level table and

second level tables respectively.

Claim 2. E
[∑

i n
2
i

]
= O (n)

Proof.

E

[∑
i

n2i

]
≤ 2 · E [C]

= E [n1 + 2C1 + n2 + 2C2 + ...]

= E

[
C +

∑
i

ni

]
= n+ E [C]

= n+
n2

m
= 2n

Note that in this proof, we add a factor of 2 because we have not defined whether we count a single

collision as 1 collision (x collides with y) or 2 collisions (x collides with y and y collides with x). We also

use the identity n21 = n1(n1 − 1) = n1 +
(
n1

2

)
, where

(
n1

2

)
represents the number of collisions in bucket 1.

Observation 3. Space is O(n) in expectation only, but by Markov bounds, we know that it is O(n) with

probability ≥ 90%. Furthermore, we can repeat the construction O(1) times until we achieve O(n) space.

Therefore, we have proved that perfect hashing will always give us a data structure using O(n) space,

O(1) query time, O(n) construction time.

We remark that in this construction, we used expectation to provide analysis; a result of this is that

it is enough to use universal hash functions to achieve these results.
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2 Intro to Sketching and Streaming

2.1 Motivation

Next, we shift to the second topic of this course: sketching and streaming. Suppose we are given a stream

of data x1, ..., xm as to an algorithm. Our goal will be to store a ”sketch” that maintains several key

properties of the data such that the size of the sketch is smaller than or equal to the size of the original

input data.

2.2 The Count-Distinct Problem

Consider the problem of counting distinct elements in a stream of sizem; in particular, given x1, x2, ..., xm ∈
[n] = {1, 2, ..., n}, we want to find the number of values of [n] that appear at least once, i.e. the number

of different values xi present in the stream. This is a well-known problem with numerous applications–

for instance, the elements might represent IP addresses of packets processed by a router or visitors to a

website.

Note that we will analyze the space used by the proposed algorithm to be able to answer the desired

question (i.e. the count-distinct question) at the end of the stream. This will be our sole performance

measure, as we are currently discounting the time complexity of updating the sketch.

To solve this problem, we can immediately come up with the following relatively-naive, deterministic

solutions:

• Use a hash table H. If xi 6∈ H, hash xi to insert it into the table. The space utilized by this solution

is O(d) ≤ O(n), where d = number of distinct items in the stream.

• Alternatively, store every xi in the stream. This will take O(m logn) space.

So, we are led to ask: is it possible to do better? If we aim for an exact, deterministic solution, the

answer is no. But, if we allow approximation and randomization, we can achieve a much better space

complexity.

2.3 The Flajolet-Martin Algorithm

Theorem 4. For ε < 1
2 , d > Ω( 1

ε2
). Furthermore, we can achieve O( logn

ε2
) space complexity.

We will use the concept of a hash function to reduce the space complexity of our solution to the distinct

element counting problem. However, in contrast to previously-used hash functions, we now define a fully

random hash function h : [n]→ [0, 1]. We now introduce the Flajolet-Martin algorithm.

Algorithm 2: Flajolet-Martin

Result: number of distinct elements appearing in the stream

z = 1;

for i← 1 to m do
z ← min{h(i), z}

end

return 1
z − 1

To demonstrate that this algorithm provides the correct result with ≥ 90% probability, we will assert

and prove a series of claims.
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Claim 5. E[z] = 1
d+1 .

Proof. To see this, we note that z is defined to be the minimum value of d random variables over [0, 1].

Pick some a ∈ [0, 1] at random. Then, since h maps values in [n] to [0, 1] uniformly, it must be that the

probability Pr[a < z] = z precisely. Alternatively, we note that the quantity Pr[a < z] also represents the

probability that h(xm) = min{h(x1), h(x2), ..., h(xm)}. In other words, this is equal to the probability

that when we choose d+1 random variables uniformly in [0, 1], the last chosen value h(xm) is the smallest.

Thus, Pr[a < z] = 1
d+1 . As a result, we conclude that z = 1

d+1 =⇒ E[z] = 1
d+1 , as desired.

Observation 6. We observe that E[1z ] 6= 1
E[z] in general, suggesting that our estimator 1

z − 1 is biased.

So, in order to find upper and lower bounds for our estimate, we will now proceed to assert and prove a

concentration bound for z.

Claim 7. For a fixed completely-random hash function h : [n]→ [0, 1], varh[z] ≤ 2
d2

.

Proof. To compute varh[z], note that

varh[z] = E[z2]− E[z]2

By the result of Claim 5, we know that E[z]2 = 1
(d+1)2

> 0, so

var[z] = E[z2]− E[z]2 ≤ E[z2]

Now, fix an x ∈ [0, 1]. Since h is fully random and h takes independent values in the range [0, 1] , we see

that

Pr[x < z2] = Pr[
√
x < z] =

d∏
i=1

Pr[
√
x < h(xi)] = (1−√y)d

Let fa(y) be the probability density function for z over [0, 1], and note that fa(y) = 1 ∀y ∈ [0, 1] since h

takes values of [0, 1] uniformly. Then, it follows that

E[z2] = Pr[a < z2] =

∫ 1

0
Pr[y < z2] · fa(y)dy =

∫ 1

0
(1−√y)ddy =

−
2(1−√y)d+1((d+ 1)

√
y + 1)

(d+ 1)(d+ 2)
(1− 2t)

∣∣∣∣1
0

=
2

(d+ 1)(d+ 2)
≤ 2

d2

But, we ask if this a good enough bound for us? Unfortunately, this result does not rule out the

possibility that z = 0, which is problematic. However, it is possible to get a 1 ± ε factor approximation

by running k = O( 1
ε2

) Flajolet-Martin algorithms for independently and identically distributed random

variables. To achieve a 1± ε approximation, we present the Bottom-k algorithm in the following section.

2.4 The Bottom-k Algorithm

The Bottom-k Algorithm yields a 1± ε approximation for the number of distinct elements seen.
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Algorithm 3: Bottom-k

Result: number of distinct elements appearing in the stream

z1, ..., zk = 1;

for item i in stream do

Compute h(i);

Maintain z1 < z2 < ... < zk smallest k hash values seen in stream
end

return k
zk

We now want to prove d̂ = k
zk

is within 1± ε of d with ≥ 90% probability.

Claim 8. Pr
[
d̂ > d · (1 + ε)

]
≤ 0.05 for k = O

(
1
ε2

)
. We can prove the other direction similarly.

Proof. δ̂ > δ · (1 + ε) ⇐⇒ k
zk
< δ · (1 + ε)

⇐⇒ zk <
k

δ·(1+ε)
⇐⇒ ∃ at least k items in stream whose hash function values < k

δ·(1+ε)

Now, we define π = Pr
[
choose d random variables ∈ [0, 1] such that at least k of them < k

δ·(1+ε)

]
. We

define xi as the indicator random variable of the ith distinct item meeting the condition h(i) < k
δ·(1+ε) .

Now, we see:

E [xi] = Pr

[
h(i) <

k

δ · (1 + ε)

]
V ar (xi) ≤ E

[
x2i
]
≤ k

δ · (1 + ε)
<
k

δ

E

[∑
i

xi

]
= δ · k

δ · (1 + ε)
=

k

1 + ε

Of particular interest is the expectation of the sums, which leads to the result:

V ar

(∑
i

xi

)
= δ · var (xi) = k

This allows us to use Chebyshev’s inequality to prove our bound:

Pr

[∑
i

xi −
k

1 + ε
> 20k

]
≤ 1

20
= 0.05

∑
i

xi >
k

1 + ε
+
√

20k

We observe that k
1+ε +

√
20k for k = c · 1

ε2
and large enough c.

⇐⇒ π

[∑
i

xi > k

]
≤ 0.05

5



3 Acknowledgements

In producing this document, we referenced the lecture notes, as well as the scribe notes from lecture 4 of

the 2017 Advanced Algorithms course, as provided on the current course website.

6


