
COMS 4995-8: Advanced Algorithms (Spring’21) Jan 19, 2021

Lecture 3: Hashing

Instructor: Alex Andoni Scribes: Conor Sweeney (cjs2201), Erica Wei(cw3137)

1 Course Info

• Homework 1 has been posted (in courseworks under Files). It is due next Thursday Jan 28 at 4pm.

• OH Calendar has been posted as well (see courseworks/course info for link).

• Please sign up for to scribe (see courseworks announcement).

2 Class Topics

• Dictionary & Hashing

3 Problem: Dictionary

In this problem, a dictionary, a data structure problem. We want to pre-process a subset S ∈ U, U is a

large universe, into the dictionary so that it can quickly answer if ”Is x ∈ S?” Solution is to use hashing.

1

Above is a visualization of how a dictionary maps a large universe U to a smaller easily search-able

dictionary m.

3.1 Collision

When x 6= y, but hash function maps them into the same cell s.t h(x) = h(y).

3.2 Ideal

Enough for hash function h such that ∀y ∈ S, ∀x ∈ U, x 6= y → h(x) 6= h(y).

3.3 Issue

It is very hard to construct such a hash function because it depends on S a lot. And it is hard to compute

the hash function. Here we will construct a hash function h s.t we have a better trade-off between

computation/evaluation time and how ”good” it is for distribution in terms of collisions.

2

4 Solutions

4.1 Random Function

Randomly choose hash function h and allow some collisions.

H = {all functions h : U → bmc}
|H| = m|u|

h ∈ H is chosen at random

4.1.1 So what is the size of each bucket?

Let Cx := the collision count for x then:

Cx , the number of elements in S s.t. h(x) = h(y)

Then the expectation for collisions can be considered as:

En[size of the bucket] = E[Cx]

= En[
∑
i∈S

1[h(i) = h(x)]]

=
∑
i∈S

En[1[h(i) = h(x)]]

= |s| · 1

m

=
n

m

(1)

It is OK to set m = Θ(n) (e.g. m = n) which would mean that En[size of the buckets] = 1.

Query Time = O(1) + time to compute h (in expectations)

4.1.2 How large is the biggest bucket?

Θ(log(n)
log(log(n))) with probability at least 99%.

4.1.3 How do we choose/store the random hash function h?

It is actually okay to use a hash function h ∈ H with ”less” randomness. See section 5.3 for more details.

4.2 Knuth’s Solution

Knuth suggests a concrete hash function to use:

h(x) = b{
√

5− 1

2
x} ∗mc (2)

m is the integer where U maps to [m]. This is not a good hash function because it’s deterministic and in

some cases it will have a large number of collisions.

3

4.3 Less Random

Definition: H is α· almost -universal if

∀x 6= y, Prh(h(x) = h(y)) ≤ α/m (3)

In this case we relax from randomness and the probability of collisions is upper bounded.

Claim 1. E[size of the bucket] ≤ α · n/m.

The proof is similar as above.

Example [Dietzfelbinger et al., ’97] :

∀a ∈ [U] a is randomly chosen with odd number,

ha(x) = b(a · x)%|U | · m
|U |
c

H = {ha, a ∈ [U]odd}

(4)

Fact: H is 2-almost universal.

Lemma: Dictionary problem can be solved by using O(n) space and O(1) expected query time.

Proof. Set m = n, table takes space O(m+n)= O(n), E[size of bucket] ≤ 1 + n
m = 2. Hash function

description is O(lg|U |).

4.4 Perfect Hashing

Goal O(1) run time deterministically.

Ideally Let C ,
∑

x∈S Cx, we want C = 0 ⇒ size of bucket ≤ 1.

E[c] = Eh[
∑
x∈S

Cx]

=
∑
x∈S

Eh[Cx]

=
∑
x∈S

n/m

=
n2

m

(5)

Suppose set m = 4n2, then E[c] = 1/4.

By Markov Bound:

Pr[C ≥ 4E[C]] ≤ E[C]

4E[C]
=

1

4
(6)

With probability at least 3/4, we have C < 4E[C] = 1. Since C is an integer, here we can say C = 0, no

collisions.

Corollary: can solve Dictionary problem with O(n2) space and O(1) query time.

4

Algorithm is following:

1) Set m = 4n2

2) Build a hash table using a random hash function h ∈ H.

3) Compute C.

4) If C ≥ 1, then try again.

This will eventually finish because the probability you have to try again is 1/4. The idea here is the size

of table is large enough so there’s not many collisions.

Issue: How many times we need to try again?

E[# of tries in pre-processing algorithm] = 1 · 1 + 1/4 + (1/4)2 + (1/4)3 + ...

Another way to think about it is = 1 · 3/4 + 1/4 · (3/4) ∗ 2 + (1/4)2 · (3/4) ∗ 3 + ...

=
1

1− 1/4
= 4/3

(7)

Expectation to try is 4/3 times.

5

	Course Info
	Class Topics
	Problem: Dictionary
	Collision
	Ideal
	Issue

	Solutions
	Random Function
	So what is the size of each bucket?
	How large is the biggest bucket?
	How do we choose/store the random hash function h?

	Knuth’s Solution
	Less Random
	Perfect Hashing

