COMS 4995-8: Advanced Algorithms (Spring’21) Apr 6, 2021
Lecture 23: Interior Point Method

Instructor: Alex Andoni Scribes: Shrihan Pasikanti, Nikhil Cherukupalli

1 Introduction

In today’s lecture, we dive into the concept of the interior point method by applying the previously visited
principles of convexity and Newton’s Method.

2 Interior Point Method for Linear Programs
In this section, we try to solve the following problem:

minc!

st. Az <b
We take K to be the set of acceptable values. That is, K := {x : Az < b}.

Definition 1.

f(a:):{ 'y ifreK

4o ifr g K
The problem is that f may not be sufficiently smooth on the boundary 9K.

Definition 2.
<oo ifrekK

F(x):{ oo ifrdK

We want F'(x) — oo as x — 0K. We will define this function in detail later so that it has the aforemen-
tioned property.

Definition 3 (Barrier Function). Let’s define:
fo(@) = ncle + F(x)
where 1 is a scalar s.t. n >0

Using our new definitions, we can restate the original problem.
New goal: Optimize f,(z) (i.e find m%l fn(x))
ZTE.



Now, we take

where A; denotes the i-th row of matrix 1.

Definition 4. z}, = argmin f,(z) = argmin {nc’z + F(z)}
x x

Claim 5. f,(z) is convex

Proof. Tt is sufficient to show that the Hessian matrix (V? fn) is positive semi-definite, which implies that
all its eigenvalues (A; > 0).
We know:

fo(w) = e’z + F(x)
V(@) =nc” +3° bl-—A;,-x
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Now, consider an arbitrary vector y ,
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yTVan(m).y = E : (b; — Aiz)?

oy lwl
(b — Ajz)?
>0

Hence, the Hessian is positive semi-definite and therefore, f,(x) is convex. O

Definition 6 (Slack Variable). & := (b; — A — ix)?



Remark 7. If A is a full-rank matriz (vol(k) > 0), then Amin (Vfy(x)) > 0, implying that fy,(x) is
strongly convexz.

Definition 8 (Analytic Center). xf is the analytic center of K if x§ = arg mingex fo(x)
We observe that z; is a continuous function w.r.t. 7.

Definition 9 (Central Path). The set {z}, : n > 0} is the central path of f.

Algorithm 0: We solve z;, when 7 is a very large number

1. Recall that Gradient Descent depends on condition number (k) of F', which could be very large.

2. Newton’s method is much faster but requires a “warm” start.

Algorithm 1: The main idea here is to walk along the central path as 7 increases from 1 ~ 0 to a very
large value of 7.

1. Start at aj for 1o > 0 such that [z} ~ z{]. Note here we assume that we know z§

*
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2. For each iteration ¢ : let 41 = m¢.(1 + «), for some small value a > 0. Then, compute =

Newton’s method with a warm start setting the initial value to

t

*

3. Terminate once 7 is “sufficiently large enough”. Return z7,

; for where n;, is the stopping point.

Fact 10. The value x;,
between them,).

. s within the convergence radius of xy, (i.e there is only a minor perturbation

Algorithm 2: Here we present an optimization of Algorithm 1.

For each iteration ¢ : m+1 = n:.(1 + @) , we don’t need to compute the optimal value of Ty, —

intermediate nm;41. In fact, each time we take a Newton’s step, we are already in the radius of convergence.

’s for each

So, we are merely trying to approximate x;';t ., in this algorithm, which results in a cruder approximation

1
of the central path but also uses fewer steps.



3 Analysis of the Terminal Condition

Here we examine some properties of the terminal condition 7.

Claim 11.
cT:c;; —cl'zr <m/n

Before proving the claim, let us make a brief aside.
lg %

First, set e = . Then, (1 + )y =2 So, T = O(—=). Note that it suffices to take a = W.

Now, let us prove the claim.

Proof. By definition of zj: the gradient convex function V f,(z*) = 0. Then,

< nc+ VF(z) =0

—VF(xy) _.
n
So, we need to show that:
VF(z)T
( 77) (x*—x:;) ST
n n

Take any x,y € K. Then,

Then, if we set x = z7,y = 2 and divide the expression above by 7, our result is proven.

m

lg oo
Therefore, the assumed value of T = O(—_") is correct.



4 Analysis of Starting Point

Here we analyze the process to compute the true analytical center.

We can obviously compute z;  from xj by Newton’s method as long as no is sufficiently small. Suppose
we have any 7/ € K :

Claim 12. V 2/ € K\ 0K (i.e. 2’ strictly inside the boundary of K ), 3n,c such that:

¢/ = argmin (nc'z + F(z))

xT

Proof. The gradient at point 2’ = 0. So,

V (ndz + F(z)) (2') =0
= nd + VF(2') =0
F /
_ VF(z') -/
n
So, we can merely fix n =1 and find ¢ O

Algorithm:
1. Given 2’ , we compute ¢ = —VF (') with n = 1.

2. Walk the central path back, and decrease 1,41 = n;.(1 — «) by taking Newton’s step. This roughly
approximates x (i.e. the true analytical center).

3. Stop at t =T large enough so that we are close enough to x

Remark 13. To find a feasible ©', we solve a different linear program LP' to mint subject to the con-
straints A;x < b; + ¢t.
For this LP’, a feasible solution can be: x =0, t = max(—b;)
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Remark 14. It is enough to set o :== © (ﬁ)

In the next lecture, we will prove Remark 14, and proceed to talk about Multiplicative Weights Update
and then switch to Large Scale Models.



