COMS 4995-8: Advanced Algorithms (Spring’21) Jan 14, 2021

Lecture 2: Approximate Counting, Intro to Hashing

Instructor: Alex Andoni Scribes: Akshat Agarwal, Julia Martin

1 Recap

To exactly count up to n we cannot do better than Q(logn) space.
Hence, we were trying to device an approximate algorithm to count up to n which uses space o(logn).
Introduced Morris’ Algorithm which is an Approximate and Randomized algorithm for doing just that.

2 Morris’ Algorithm Continued

Approximate and Randomized counting algorithm with reduced space usage:
- Initialize X =0

X, with probability 1 — 2=X
- onButtonPress: X =

X + 1 with probability 2%
- Estimate: 1 = 2X — 1

Note:
- The bigger X becomes, the less likely it is to increment

Doubt 1: Is it a good estimator?

e 71 is a Random Variable
e Our Goal is to get n as close to n as possible
e A good start to achieve this goal could be to make sure that the expected value of 7 is n

Claim 1. Yes, it is good. E[n] = n

Proof. Define X, as the value of counter X after n button presses, and with X initialized to 0. We want
the show that E[i)] = E[2%» — 1] = n. We will prove by induction.

Base case: for n =0, Xo = 0; E[2X0 —1] =0
Inductive Step: Assume for inductive hypothesis that E[2X»-1 — 1] =n —1
We want to show E[2%» — 1] = n.



We have:
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Doubt 2: Did we save space?

e Did the hassle pay off?

(by inductive hypothesis)

e Now we want to prove that the number of bits necessary to denote n has improved from log(n)

Claim 2. Yes we saved space. The number of bits taken by X, i.e. log(X ), is of the order of log(log(n))

with probability > 90%

Proof. Apply the Markov Bound on 7, we know E[n] = n:

n
Prfi > 10n] < — = 0.1
i > 10 < 357

— Pr[2%" —1 < 10n] > 0.9

Now when 2%» — 1 < 10n (this happens with 90% probability)
= 2% <10n+1
— loglog 2% < loglog (10n + 1)
= log X, <loglog (10n + 1)
Hence we get, Pr[log X = O(loglogn)] > 0.9
Doubt 3: How far below the actual n can our estimator n be?

e Using Markov Bounds we saw that 90% of times n < 10n

e With High Probability, our guess will be above n by no more than a constant factor multiple

e Now we want to check how low below the actual n can our guess be.

e We will find this using Chebyshev bounds. But for that we first need the Variance of n



Claim 3. Var[n] < 3n(n+ 1) +1 = O(n?)

Proof. We know,
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Inductive hypothesis: E[22X"] < 3n(n+1) +1

Base case: n=0:E[2°] =1<1
Assume the inductive hypothesis for E[22Xn-1]

Now we want to compute the expectation:
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Claim 4. Using the Chebyshev bound, we can find a lower bound and a tighter upper bound, such that:
n € [n—5n,n + 5n|

Proof. So far, we have:



Apply the Chebyshev Bound on 7

Var[n]

Prfli — E(n)] > Al <~

. 2n?

We approximately want this probability to be < 0.1, therefore:

2n2
2n? < 0.1)2

A >V20n

Enough to have A = 5n, We have:
Pr[|n —n| > 5n] <0.1

With Probability 90%:
n € [n—5n,n+ 5nj

Doubt 4: Is this good enough?
e The upper bound is still fine. But the lower bound suggests that there is a high probability that
we might end up with negative values of n.
e Can we do better?

GOAL: 7 € [n — en,n + en|; for small € > 0
e Basically, n € (1 £ ¢)n

e ¢ will be a small quantity like 0.1, suggesting a 10% error margin
e For this we will see Morris+ Algorithm

3 Morris+ Algorithm

- Take k counters, compute i.i.d.
- Press button for each counter completely independently {x 1x 2....x k}
- Each of them is Morris Algorithm with counter x!, {i = 1,... k}

Estimator 7 is equal to the average of estimators {x!,....x*}

Claim 5. E[p¥] =n



Proof. Note: X _1=n
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Claim 6. Space is O(kloglogn) with probability > 90%. No counter is larger and occupying more than
logn space

Claim 7. var[A*] = Lvar[f] (variance of one counter)
Proof.
1 1 E 1 & g 1
var[n®] = var| Z ; zvar[;@ -1)] = e ;var[(Z -1)] = Evar[n]

Goal: Want n = (1+¢e)n
Kk
Chebyshev: P[(iF —n)>en] < UZQE:”Q le2n2 < 0.1

< 0.1e%n?
P
> var[n]
~ 0.1e2n?
2
It is enough to require k = 0.12:2”2 = ?—8 = @(8%) So, it is enough to repeat Morris Algorithm 6%
times Theorem: Morris + Algorithm can achieve (1 +¢) approximation with 90% probability using space

O( log;ggn)

4 Hashing

Problem: Dictionary, data structure problem Given a large, fixed universe U of items Given set SeU, |S| =
n, preprocess S into data structure such that it can answer: "Is zeS?"

Solution:

1. Given S, iterate over S — O(n) runtime

2. Binary search — O(logn) — querytime log n, space: O(n)

3. Full-index: Store a table T of size |U| with {T i} = 1 iff ieS — query time = O(1) and space = O(|U|)

Can we combine for O(1) query time and O(n) space? This is what hashing tries to do. If we use



IP addresses, each with 32 bits, as an example: |U| = 232 = all possible IPs, all binary strings of length
32 Hashing says U is large but the set in our data structure is small, so we reduce U
U(h)—1,.m

Property x: h: U — [m] satisfies: V i € S and given © we have: h(i) = h(z) iff i = .

Solution to dictionary problem:

1. Compute h(i), i € S to reduce universe from U to m
2. Store table {T j} = 1iff j = h(i), ie S

3. At query z, check if T h(x) =1

Solution performance: space = O(m) and query time = O(1) to query table + time to compute h(z)
Solution 4: pick h randomly and hope that our property * holds with good probability

Define: Collision h(i) = h(z) x says that they should only collide if i = =, then solution 4 should be
correct



