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Lecture 19: Linear Programming Duality, Ellipsoid Algorithm

Instructor: Alex Andoni Scribes: Qianjun Chen, Cheng Zhang

1 Overview

Today’s lecture is about LP duality, and ellipsoid algorithm, which is the first poly-time algorithm for

LP.

2 Linear Programming Duality

Standard form:

υ∗ = min cTx

s.t. Ax = b

x ≥ 0

which c ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

1. If we want to prove optimal value υ∗ ≤ υ, just show some x ∈ F , cTx ≤ υ.

2. υ ≥ ...?

Definition 1. Dual of standard form linear programming:

ω∗ = max bT y

s.t. AT y ≤ c

y ≥ Rm

You’ll notice that conveniently the dual of the standard form is what we call the general form of linear

program.

Theorem 2 (weak duality).

ω∗ ≤ υ∗

So in a sense, these dual linear program, will provide such lower bound. It’s basically coming from the

weak duality theorem. Let’s prove this, and basically, this will motivate how we came up with a linear

program.
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Proof. Fix x ∈ F : Ax = b and x ≥ 0. Fix any y ∈ Rm, yTAx = yT b, which yTA is a vector ∈ Rn.

Remember, in standard form, x is positive, and the standard form is minimizing the product of x with

some vector c.

Suppose y such that yTA ≤ cT (each coordinate). This implies that:

1. yT b = yTAx ≤ cTx

2. max yT b ≤ min cTx. y: yTA ≤ cT , which is ω∗. x: Ax = b, x ≥ 0, which is υ∗.

So there are two questions. The first is, is this a good lower bound?

3 Dual of Dual

If we take a dual, and take its dual, we get the primal:

υ∗ = min cTx

s.t. Ax = b

x ≥ 0

This is the dual:

ω∗ = max bT y

s.t. AT y ≤ c

Mechanically, once you put the primal in the standard form, then there is an. automatic way to get the

dual. We need to take our dual, put it in a standard form.

Dual return to the standard form:

−ω∗ = min − bT y,AT y ≤ c

= min − bT (y+ − y−)

AT (y+ − y−) + δ

which y+, y−, δ ≥ 0, y+, y− ∈ Rm, δ ∈ Rn. This is our dual return to the standard form.

Dual of the dual:

unknowns: z ∈ Rn.

Objective function: max cT z.

Constraints:

The constraint matrix of dual return to the standard form is :

AT −AT In
y+ y− δ

So the constraints will look like this:
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A −b
-A ·z ≤ +b

I 0

Each row here we have:

ATi z = bi ⇐


ATi · z ≤ −bi
−ATi · z ≤ +bi
zi ≤ 0

which Ai = ith row of A.

Let’s replace the variable z′ = −z. What we obtain is that Dual of (-Dual):

max cT (−z′)

s.t. Az′ = b

z′ ≥ 0

So Dual of the Dual:

−max − cT (−z′) = min cT z′

s.t. Az′ = b

z′ ≥ 0

which is exactly equal to primal.

Remark 3. It does not prove immediately the strong duality.

4 Strong Duality

Theorem 4. w∗ = υ∗

υ∗ = min cTx

Ax = b, x ≥ 0

w∗ = max bT y

AT y ≤ c

The actual proof of strong duality is painful, there are a lot case analysis, so we want to do pseudo

proof by its intuition.

Intuition: Consider dual with y → −y, c→ −c
⇒ −w∗ = min bT y

s.t, AT y ≥ −c, y ∈ Rm

Consider a ball is pulled down by gravity in a m-dimensional space. Each equation ATi y = ci forms a

hyper-plane in this space. The ball can only be dropped into the convex composed by these hyper-planes.
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What does it mean that ball is resting?

At this point, there must exist the same force pushing it upward to against the gravity force pulling

it down. This force is exactly these hyper-planes the ball is resting on.

⇒ a set S of constrains/half-spaces

(1) i ∈ S ⇒ Aiy = ci (tight constrains)

(2) ∃ coefficients x1, · · · , xn ∈ R+∑
xiAi = b⇔ Ax = b

(2’) if i /∈ S, it is not a hyper-plane on which the ball is resting, then xi = 0

Value of primal: −cTx
Value of dual: −bT y
To compute these two values based on part (1) and part (2) above:

∑
xiAiy = yTAx

1©
=

∑
xici = cTx

2©
= yT b = bT y

Therefore, we’ve proven the value of primal is equal to the value of dual.

Note: for every i ∈ [n], we must have: xi = 0, or Aiy = ci, or both. (complementary slackness)
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5 Ellipsoid Algorithm [Khachiyan ’79]

It solves feasibility problem.

First, we need to define what feasibility problem is, feasibility problem (FP) is to find x ∈ Qv if exists,

for such:

Qυ = {x : Ax ≥ b, cTx ≤ υ}

in general form, that is LP : υ∗ = min cTx, Ax ≥ b.
The feasibility problem is definitely no harder than solving the LP, since once we solve the LP, we

will find the optimal x, that can be used to solve FP.

Remark 5. can solve LP using FP with ploy-time slow-down

Proof. Do binary search on υ.

Let R = upper bound on value of |v∗|
Without solving a linear program, it is easier to find an upper bound of absolute value of the V ∗, in

particular:

lg2R ≤ ploy(n,m) ·B

where m is the number of constraints, B is the number of bits to represent each input number

Algorithm 1 Binary Search

1: set l = −R, r = +R
2: m = l+r

2
3: if Qm is feasible then
4: recursive on l = l, r = m
5: else
6: recursive on l = m, r = r
7: end if
8: stop when r − l is sufficiently small, ≈ 1

RO(1)

9: then optimal solution υ∗ ≈ l ≈ r

number of binary search iterations = O(logR) = O(poly(n,m)B),

solving Qv = {x : Ax ≥ b, cTx ≤ υ}

From the perspective of this problem, there is no really difference between inequality Ax ≥ b and

inequality cTx ≤ υ.

The goal is to find any x point inside the space.
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6 Next Class

How does Ellipsoid Algorithm find such x point, then we will start talking about gradient descent for

general functions.
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