
COMS 4995-8: Advanced Algorithms (Spring’21) Mar 11, 2021

Lecture 16: Cheeger Inequality

Instructor: Alex Andoni Scribes: Shaoyu Liu, Chengrui Zhou

1 Spectral Partitioning

1.1 Recap

Recall from last lecture we have:

1) µ2 = 0 if and only if graph G is disconnected.

2) We define the Laplacian and its normalized form for a graph G = (V,E):

L = D −A

L̂ = D−1/2LD−1/2

= D−1/2(D −A)D−1/2 = I − Â

where L is the Laplacian matrix, L̂ is the normalized Laplacian matrix, D is the degree matrix, A is the

adjacency matrix and Â is the normalzied adjacency matrix.

1.2 Conductance

Definition 1: A cut is defined as a separation of a graph G into two subsections S and S̄.

Definition 2: for cut S,

∂S = {(i, j) ∈ E, i ∈ S, j ∈ S̄}

In words, ∂S is the number of edges crossing S and S̄.

We want to develop a quantitative statement to show how close to disconnected a graph is. This

motivates the idea of conductance.

Definition 3: Conductance: We define the conductance of a cut S to be:

φ(S) =
|∂S|
volS

where vol(S) =
∑
i∈S

di

We define the conductance of a graph G to be:

φ(G) = min
S⊂V

φ(S) s.t. 0 < vol(S) ≤ vol(V)

2

Alternatively, it can be written as:

φ(G) = min
S:vol(S)6=0

|∂S|
min{vol(S), vol(S̄)}

1

2 Cheeger’s Inequality

Definition 4: Cheeger’s Inequality

µ2
2
≤ φ(G) ≤

√
2µ2

Cheeger’s inequality allows us to bound the connectivity of a graph, and get an idea of how “connected”

a graph is just from its Laplacian. The left-hand inequality is somewhat easier and more “intuitive” to

prove, while the right-hand inequality involves a much more involved proof.

2.1 Proof of µ2
2
≤ φ(G)

Remember from last lecture,

µ2 = min
x 6=0,x⊥v1

xT L̂x

xTx

where xT L̂x
xT x

is R(L̂, x), the Rayleigh quotient for L̂ and nonzero vector x.

Therefore, we need to construct some x, such that it satisfies the two conditions:

1) eTD
1
2x = 0;

2) R(L̂, x) ≤ 2φ(G)

Remember the definition for φ(G): φ(G) = minS⊂V φ(S) s.t. 0 < vol(S) ≤ vol(V)
2 . Let S∗ = arg minS φ(S)

where S ⊂ V and 0 < vol(S) ≤ vol(V)
2 , so φ(G) = φ(S∗) = ∂S∗

V ol(S∗) .

Note: R(L̂, x) = xT L̂x
xT x

= xTD−
1
2LD−

1
2 x

xT x
.

Change notation, let D−
1
2x = y, then x = D

1
2 y. As a result, we can write:

R(L̂, x) =
yTLy

yTDy
(1)

Remember we have shown that yTLy =
∑

(i,j)∈E (yi − yj)2 before, plug into equation (1), we have:

R(L̂, x) =

∑
(i,j)∈E (yi − yj)2

yTDy
(2)

Now the problem is to find such a y where 1) and 2) above hold.

So define y = 1S∗ where yi =

{
1 if i ∈ S∗
0 otherwise

Note by such definition, we immediately find that

yTLy =
∑

(i,j)∈E (yi − yj)2 = |∂S∗|, where the second equality follows from the definition of yi, where

only an edge crossing from S to S̄ will contribute to the summation. However, such definition of y does

not satisfy 1) because eTD
1
2x = eT y 6= 0.

To deal with this, we have to modify the definition of y slightly. Let y′ = y − σ × e where σ is a

variable to be found to make eTy = 0. Note that we still have (y′)T Ly′ = |∂S∗|. Now the goal is to solve

for an appropriate σ.

2

eTy = 0⇒ eTD(1S−σe) =
∑

i∈S∗ di(1−σ)+
∑

i/∈S∗ di(−σ) = (1−σ)V ol(S)−σ(V ol(V)−V ol(S)⇒
V ol(S)− σV ol(V)⇒ σ = vol(S)

vol(V) .

Thus, we have found that σ = vol(S)
vol(V) will make y′ s.t. eT y′ = 0 and (y′)T Ly′ = |∂S∗|.

Next step, we will compute (y′)T Dy′.

(
y′
)T
Dy′ =

∑
i∈[n]

y′idiy
′
i

=
∑
i∈S∗

(1− σ)2di +
∑
i/∈S∗

(−σ)2di

= (1− σ)2 vol (S∗) + σ2 (vol(V)− vol (S∗))

= (1− vol(S∗)

vol(V)
) vol (S∗)

After that we check if such y′ would make R(L̂, x) = y′TLy′

y′TDy′
≤ 2φ (S∗)

R(L̂, x) =
(y′)T Ly′

(y′)T Dy′
=

|∂S∗|
(1− σ) vol (S∗)

=
φ (S∗)

1− σ
≤ 2φ (S∗) = 2φ(G)

using the fact that V ol(S) ≤ 1
2V ol(V) and φ(S∗) = φ(G).

2.2 Proof of φ(G) ≤
√
2µ2

Introduction behind the proof:

µ2 = min
x∈Rn,x 6=0,x⊥v1

R(x)

x need not look like

x = D1/2(1s− σ × e)

We now use Spectral Partitioning Algorithm:

Find a set S with

φ(s) 6
√

2µ2 .

Build S from 2nd eigenvector V2 = arymin
x 6=0
x⊥V1

R(x) ∈ Rn

Sort all nodes

i ∈ [n]

π1, π2, . . . πn ∈ [n] : V2πi 6 V2, πi+1

Iterate i=1,2,...,n-1, consider

Si = {π1, π2, . . . π1}

3

and compute

φ (si) =
∂s

min {vol(s), vol (s′)}

2.3 Example

Now we give an example:

Weight of edge =
1

difference in gray scale

Now what we want to do is to find a cut that minimizes weight of cut edges, and we can get

φ(s) =
∂S

vol(s)
.

Remark:Spectral Partitioning Algorithm runs in O(m + nlgn) time after having computed V2.

3 Optimization

Now we are going to talk about:

——Linear Programming and the quality:

One of the main goals here will be to give a polynomial time algorithm following a program.

——Gradient Descent, Newton method
(
2nd method)

——IPM(Interior Point Method)

3.1 General Optimization Problem

We usually want to maximize or minimize f(x), which is subject to x ∈ F ⊂ Rn, called feasible set.And

linear programming is a instance.

Problem 1: Computing φ(G) = φ
min s

(S) var: x ∈ Rh, xi ∈ {0, 1}, whether i ∈ S

Solution 1:

What we want is

min f(x) = min

∑
ij∈ E (xi − xj)2∑

x2i

4

We can take absolute values certain like this, level of generality. Usually having these little squares, not

optimal values leads to nicer optimization problems. And this is what x transpose x rays, which is a

summation of x ray squared.

There are more constrains that it is divided by the volume. Where volume was summation, over degree

I. So we have

min f(x) = min

∑
ij∈ E (xi − xj)2∑n

i=1 dixi
(1)

The volume has to be positive, so ∑
xi > 1 (2)

There should be at least one node there. And everyone is as volume has to be at most half volume of the

entire reference summation of J. And we get

n∑
i=1

dixi 6
1

2

n∑
i=1

d (3)

xi is either 0 or 1, so we have

xi (xi − 1) = 0 (4)

Combine (1),(2),(3),(4), we get φ(G).

And combine (2),(3),(4), we get set F.

This is so called NP-hard problem. These are the main barriers to being able to solve these and put them

in real time. And the ratio in (1) is actually not an issue because we can always intimidate dissidents.

Anyway, this is just an example connecting us to this chapter of an opposition problem. We don’t expect

to solve all of condition problems in a little time, but we hope to solve some of them. And there are

different classes of of optimization problems that are solvable. The most classic example is linear program.

3.2 Linear Programming

Linear Programming is basically optimization set of transition problems where f is linear:f(x) = cT · x.

F is a linear as well. F is defined as follows Ax > b Aixi > bi. We have the most general form of linear

programming:

min
{
cTx | Ax > b ∧ x ≥ 0

}

5

