COMS 4995-8: Advanced Algorithms (Spring’21) Feb 25, 2021

Lecture 14: Random walks, largest eigenvalue

Instructor: Alex Andoni Scribes: Maryam Bahrani, Miranda Christ

1 Introduction

We apply spectral results from last class to characterize matrices corresponding to random walks in a
graph. In particular, we prove that the largest eigenvalue A\; of a symmetric graph derived from the
adjacency matrix must equal 1. We also show that the second eigenvalue Ag = 1 if and only if the graph
is disconnected.

2 Random walks in a graph G

We apply concepts from last class (namely the Spectral Theorem and the Rayleigh quotient) to analyze
random walks.

Let A = Ag be an adjacency matrix for an undirected graph G on n vertices. Let D = Dg be the
diagonal matrix of degrees of vertices of G. Let X° be a starting distribution over [n], and let X! be the
distribution at time ¢. That is, X! is the probability that a random walk is at vertex i after ¢ random
steps.

As shown last class,

Xt:(A-D_l)t'XO

We wish to apply the Spectral Theorem here to somehow characterize X; however, we can only apply
the theorem to a symmetric matrix. Letting A= D~"/2.A. D~/ (note that A is symmetric), we have:

—A.D Y.DYo A.D2 DL DV2A. D2 D=2 X0

Letting Y* := D~'2X*, we have Y! = At . D='/2. X0 = A'. Y9, Observe that A = D~'2. A- D' is
symmetric as desired. We can now apply the Spectral Theorem to A, letting us write

A = Z)\ivivz‘T )\1 Z )\2 Z Z )\n

where (A;,v;) are eigenvalue/eigenvector pairs, ||v;|| = 1 for all 4, and v; - v; = 0 for i # j.
Fact 1.
o At = Yoy )\fviviT since for all i # j, v; and v; are orthogonal.

o Y0 = Z?:l a;v;, where a; € R and the a;’s are uniquely determined.
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Proof. We sketch a proof of the last fact, that Y* = Y7 | Aa,v;. We first compute Y
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where in the last step, we use the fact that for ¢ # j, v; and v; are orthogonal, so viT

on t and doing a similar calculation, again using the fact that v; and v; are orthogonal for ¢ # 7, it follows
that Y =", Majuv;. d

v; = 0. By inducting

Observation 2.

e If \ > 1, then Y, diverges as t — co. Since Y* = D~'2X* where X' represents a probability
distribution, this cannot happen. The same issue arises if A < —1. Thus \; € [—1,1] for all i.

o If N\ €(—1,1), as t — oo, the value Na;v; goes to zero.

Theorem 3. Let A\ > Ao > ... > A\, be the eigenvalues ofA chosen according to the spectral theorem.
Then A\ = 1.

Proof. We first show that Ay > 1. Recall that

AL = rgrEl%( R(z)
where R(z) is the Rayleigh quotient of x. Thus to show that A\; > 1, it is sufficient to find an = such that
z # 0and R(z) > 1. Let z = (Vdy,Vda,...,\/d,)T = D2 .1, where 1 denotes the vector of all ones.
We will show that this choice of x indeed achieves R(x) = 1.



Observe that A - 1 is a vector of the degrees of each vertex. We use this fact below.

R(x) =
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Therefore, Ay > 1. It now suffices to show A < 1, completing the proof.
We show that for all x # 0, R(x) < 1. Let = # 0.
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Here we can apply the Cauchy-Schwarz inequality: for all vectors p, ¢, we have p-q = ||p| - ||q|| - cos(p, q) <

Ly

9l - llgll- We define p,q € Rl where for 4, j such that A;; = 1, we let p;; = A and g;; = %. Thus
i j
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Thus R(z) <1 for all  # 0, and consequently A; < 1. Since we previously showed A\; > 1, we have that
A1 = 1 as desired. O

Remark 1. If \; is unique, then its corresponding eigenvector v1 = (v/d1,v/da, ..., Vdy).

T Tj

Remark 2. If R(z) =1 for some vector z, then = A for every edge (i, 7).
i i

Proof. Consider = such that R(xz) = 1. Consider the A\; < 1 part of the proof above. The only inequality
there is due to Cauchy-Schwarz, which we can replace with the equality p- ¢ = ||p| - ||l¢||, to conclude
that R(z) = cos(p, q) for all z. Thus R(x) = 1 implies cos(p, q) = 1, that is p = aq for some positive real
number «. By definition of p and ¢, this implies that for every edge (i, j), we have

and by symmetry also

€ xT;

\/d»j:a\/dj'

For both these equalities to hold simultaneously, it must be the case that a = 1. Therefore, % = =2
Vi = Vg
for every edge (7, 7j) as desired. O
Remark 3. R(z)> —1 for all z, with equality iff x;_ =— \;ZT for every edge i, j.
i j

The following theorem connects the algebraic quantity Ao to the combinatorial property of graph
connectivity. This is rather surprising as the two properties seem unrelated on the surface but is a
common theme in the Spectral graph theory, as we shall see in future lectures.

Theorem 4. A\ =1 if and only if G is disconnected.

Proof. We first show that if G is disconnected, then Ay = 1. If GG is disconnected, it can be thought of as
two non-empty graphs G1, Gy with no paths between them. Reordering the rows and columns of Ag to
list the vertices of G first and the vertices of G second, we get the following block structure on Ag

Ag, 0
0 Ag,

Ag =

Suppose G7 has k vertices, and let (A\;,v;), ¢ = 1,2,...,k be the eigenvalues and eigenvectors of flgl.
Note that v; € RF. Furthermore, let (Aiyx,visr), i = k +1,...,n be the eigenvalues and eigenvectors of
Ag,, where v;,x € R"*. Then the eigenvalues and eigenvectors of Ag are (\;, vl),i=1,...,n, where

’ (UZ‘,O,...,O) 1fz§k
Ui:
0,...,0,v;) ifi>k

By Theorem 3, the first eigenvalue of both 121(;1 and AGQ is equal to 1. So in particular, \y = 1,0} =
(v1,0,...,0) and A\gy1 = 1,054 = (0,...,0,vx41) are both eigenvalue-eigenvector pairs of Ag, where v}
and v}, 41 are orthogonal, and thus Ag = 1.



We now show the other direction by contradiction. Suppose G is connected and Ay = 1. Let vy be
an eigenvector with eigenvalue 2. We know that vy L vy, so R(v2) = A2 = 1. By Remark 2, this implies

that for every edge 7, o T
v

Vi
Let 8 = \%T' Since G is connected, there is a path from vertex 1 to every other vertex ¢, and the chain of
equalities along each edge of this path implies \%7 = % = B for all vertices i. Put differently, z; = v/d; 3
for every i € [n]. Therefore, z = vy - 3, since v; = (\/di,...,/d,) by Remark 1. This contradicts the
assumption that ve L vy, completing the proof. ]




