
COMS 4995-2: Advanced Algorithms Jan 21, 2020

Self-Evaluation Test

Instructor: Alex Andoni

This is a self-evaluation test for you to confirm that you have the sufficient background for the class,

and identify potential parts to brush up before the class. You are expected to understand and solve all

problems on this test. You do not have to turn in solutions.

The main prerequisite for the class is mathematical maturity, i.e., being able to follow and write

rigorous mathematical proofs, of both combinatorial and analytical flavors. In terms of concrete topics,

you should be comfortable with linear algebra, minimal probability theory, some basic algorithmic notions.

As a result, the problems below are partitioned by category.

1 Math

1.1 Norms

For a vector x ∈ Rn, and an integer p ∈ (0,∞], the p-norm of x is defined as ‖x‖p = (
∑n

i=1 |xi|p)
1/p.1

Prove the following:

• ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2, and this is tight (i.e., each inequality becomes an equality for some non-zero

x);

• when p = log2 n, ‖x‖p is a 2 approximation to ‖x‖∞ (i.e., ‖x‖∞ ≤ ‖x‖p ≤ 2‖x‖∞).

In the spirit of above, how can you relate the 10-norm of x to the 5-norm of x?

1.2 Runtime of Merge-Sort

Merge-Sort is an algorithm for sorting n numbers, which proceeds as follows. Suppose the input is an

array A[1 . . . n] of length n (which, for simplicity, assume is a power of 2). We partition the array into

two, A[1 . . . n/2] and A[n/2 + 1 . . . n]. We sort each part recursively and then merge the 2 (sorted) parts.

It is known that the latter merge operation can be accomplished in time O(n).2 The base case of the

Merge-Sort is when n = 1, in which case we do nothing (the array is already sorted).

Here, you are to determine whether the following statement/proof is correct or not (why or why not).

Claim 1. The runtime of the above MergeSort algorithm is O(n).

Proof. Let T (n) be the runtime of Merge-Sort on an array of length n. Then, by the above description

we have that:

T (n) = 2 · T (n/2) + O(n),

1For p =∞, ‖x‖∞ is formally defined to be maxi∈[n] |xi|, which can be seen as the limit as p→∞.
2Remember that O(f(n)) is the set of functions g : N→ N such that there exist c > 0 and n0 ∈ N such that, for n ≥ n0,

g(n) ≤ c · f(n).

1



corresponding to the two recursive calls and the merge operation respectively.

We prove the claim that T (n) = O(n) by induction. Indeed, we have that:

T (n) = 2 · T (n/2) + O(n) = 2 ·O(n/2) + O(n) = O(n).

This completes the proof of the claim.

2 Linear algebra

2.1 Quadratic forms

Let A be a n-by-n matrix whose maximum singular value is 2020. What is the minimum and maximum

possible value for the quadratic form xTAy, where x, y ∈ Rn are unit-norm vectors?

2.2 Linear systems

Suppose A is a n-by-n real matrix and b ∈ Rn. For the unknown vector x ∈ Rn, describe what are the

possible sets of solutions for the following:

• Ax = b;

• argminx∈Rn ‖Ax− b‖2.

To give a better idea of what’s asked, consider the “Ax = b” case when n = 1 (i.e., just a simple

equation). Here’s the answer for this case:

The possible sets of solutions are: 1) there may not be a solution (empty set), 2) may be exactly one

solution, or 3) any x ∈ R is a solution.

The above 3 cases correspond to when 1) A = 0, b 6= 0, 2) A 6= 0, 3) A = b = 0.

3 Probability

3.1 Hashing

A function h : U → [m], where U is a discrete set (e.g., integers of O(log n) bits), and m ∈ N, is called

a hash function with m buckets. (One can see this as assigning one of the m buckets to each possible

item from U .) Most common hash function is a random hash function: each h(i), i ∈ U , is chosen iid at

random from [m].

Below, consider a set S ⊂ U of size n.

• Let h be a random hash function with m = n. What is the expected size of a bucket, i.e., |h−1(i)∩S|
for any i ∈ [m] ?

• A collision is an event where distinct x, y ∈ S satisfy h(x) = h(y). What is the expected number

of collisions among elements of S under h? (To give an example, if one has precisely three distinct

items x, y, z ∈ S falling into the same bucket, they generate 3 collisions: (x, y), (y, z), and (z, x)).
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A family H of hash functions h is k-wise indepedent if for any distinct a1, . . . ak ∈ U and (not

necessarily distinct) q1, . . . qk ∈ [m], we have that

Pr
h∈H

[h(a1) = q1 ∧ . . . ∧ h(ak) = qk] = 1/mk.

Note that the aforementioned random hash function is |U |-wise independent (or, to be more precise, the

family H of all functions h : U → [m] is |U |-wise independent).

• How do the estimates from above change if our hash function h is chosen from some 2-wise inde-

pendent hash family H2?

4 Algorithms

4.1 Graphs

A graph G has n nodes and m edges. Suppose that m = n/2 (assuming n is even). What is the smallest

and the largest number of connected components that G can have?

4.2 Alice tells Bob

Consider Alice holds a number n and wants to communite it to Bob approximately using minimal possible

communication. In particular, Bob should be able to output some n′ satisfying n ≤ n′ ≤ 2n. How many

bits does Alice need to send to Bob to achieve this goal? (Answer up to O(·) is enough.)

Does the answer change if it’s a “dialogue” — Alice and Bob sequentially communicate to each other

a number of bits (think of it as if Bob can “ask questions”) — and the “total communication” is the total

number of bits exchanged ?
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