COMS 4995-2: Advanced Algorithms (Spring’20) Feb 18, 2020
Lecture 9: Random walks, and the largest eigenvalue

Instructor: Alex Andoni Scribes: Xingyu Zhu, Yiyang Zeng

1 Introduction

In the previous lecture,we introduced the random walk, spectral graph theory and rayleigh quotient,
today we continue the topic of random walk, we will apply spectral decomposition and drive some
properties of diffusion and eigenvalues, and we will investigate the relationship between eigenvalue and

graph connectivity.

2 Remainder

e we can apply spectral decomposition to a symmetric graph matrix M : M = > | )\ivwl-T, where

V1,02, ..., Uy are n orthonormal eigenvectors such that ||v;|| = 1 and viij =0Vi#j.
. . ' Max
e rayleigh quotient is defined as R(x)= W and R(v;) = A\ Vo;.
T

3 Diffusion/ Random walk
Let 2°(€ R™) = distribution over vertices in G.
=Wz = AD7 12t > 1)

2t =AD7'. AD7 .. 2% = (ADTH . 40 (1)

If (AD™!) is symmetric (eg, when D is diagonal of the same number, equivalently all degrees are
exactly equal)
e.g. when d-regular:
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In general:

n
M = Z Mu;v! (by induction)
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when AD™! is not symmetric, we can analyze a related matrix.

2t =AD7 . AD™ ... 20 = (ADY)t . 20
— AD-V2D12AD-1/2 ... p=1/2,0

Definition 1. A = D-1/24p~1/2

Aij

Vi

Definition 2. y* = D~1/2z!

Note: A;yj =

From the definition 1,2 and equation(1),we have:
yh= AP (2)
Apply spectral decomposition for A:
A= Z )\Z-UZ-UZT, Al = Z )\fv,-v;f
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Claim 3.

If \i <1 = term Nayv; disappears as t — oo
If \i >1 = X diverges

Thus, intuitively, we must have:

DN <1 Vi
M| =1 3i

Theorem 4. \{ =1

Proof. 1) A1 > 1 (recall A\ = max R(x) (x #0))

Let © = (Vdi,Vda, ..., /d,)":
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Cauchy-Schwartz: p” - q < ||p||? - ||q|/ O

Remarks:

1. since v; = argmazx R(z) = v = (V/d1,Vda, ..., /dp,) (unique iff Ay < 1)
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2. R(x) =1 iff CS is tight for x iff Ja > 0 s.t. vector p is a rescale

of vector q)
= a=+1

fa=+1= Li 1y
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Similarly R(x) > —1 always (using p-q > —||p| - ||l¢||), and R(z) = —1 iff the above holds with

Vij € E
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Applying to our diffusion/random walk example: Recall y* = > a;Alw;.
Given A\; = 1if [Ag|, ..., |An| < 1 = limysoo v = a1 - AL -0 = gy

1
Z—(\/dl, Vda, ...,\/dy) is the unique eigenvector with A;)
d;

Note that also a; = vf - 9% = 3, 2% = 1 (by the assumption that z° is distribution). Hence
dq
da

a=-1(

where v; =

is the unique stationary distribution in this case.

. 1

limy_yo0 2t = DY/ 20; = . 4
dn,

Theorem 5. Ay < 1 < G connected

Proof. G is disconnected = Ao =1

Let’s say A has two components: compl and rest as below:

= <comp1 0 )
0 rest

compl will act independently of rest meaning each component has its own eigenvalues and eigen-
vectors, so each component will have its own top eigenvalue,which is 1 as proven above. Say compl is
composed of k nodes {1,2,....k}, we can write v; = (V/d1, ..., Vdg, 0, ...,0),v2 = (0, ..., 0, \/dks1, ..., Vdp).

Prove in other direction: If G is connected = A\g < 1

take vo L v1 (v1 = V/d1,...,/dy), prove by contradiction:

suppose R(z =vy) =1 = = —=V(4,7)
Vdi  \/d;
- N 8 where 8 = RSV

= x proportional to v; (contradicted with x L v;)

where the middle step is since there’s a path from node 1 to each other node, and we can apply the
above equality to each edge on this path. O



