COMS 4995-2: Advanced Algorithms (Spring'20)

Feb 13, 2020

Lecture 7: Spectral Graph Theory

Instructor: Alex Andoni

Scribes: Liushiya Chen, Yu Guo

1 Diffusion Operator

Definition 1. Given graph G with n nodes, we define the diffusion operator W as the following.

 $x \in \mathbb{R}^n_+$, $x_i = Pr(at \ node \ i \ in \ a \ random \ walk \ on \ G)$

$$W(x): \mathbb{R}^n \to \mathbb{R}^n, \quad W(x)_i := \sum_{j;(i,j)\in E} \frac{x_j}{degree_j}$$

Example 2.

$$G = 1 - 2 - 3 - 4 - 5, \quad D = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Suppose we start at node 1, our initial state $x_0 = (0, 1, 0, 0, 0)^T$, then we should expect .5 probability of walking to node 0 and 2.

$$W(x_0) = \begin{bmatrix} .5\\0\\.5\\0\\0 \end{bmatrix}$$

Definition 3. A stationary distribution x^* satisfies $W(x^*) = x^*$.

In our example above, $x^* = (1/8, 1/4, 1/4, 1/4, 1/8)^T$. The intuition is that node 1, 5 have degree 1 while nodes 2,3,4 have degree 2, and so $2x_1^* = 2x_5^* = x_2^* = x_3^* = x_4^*$.

Definition 4. Another way to define diffusion operator W:

$$W(x) = A \cdot \underbrace{D^{-1} \cdot x}_{\text{mass sent to each}}, \quad W(x)_j = \sum_{i \in [n]} A_{ij} (D^{-1} x)_i$$

Then the stationary distribution x^* satisfies $AD^{-1}x^* = x^*$.

2 Spectral Decomposition & Theorem for Symmetric M

Definition 5. v is eigenvector with eigenvalue $\lambda \in \mathbb{R}$ if $Mv = \lambda v$.

Observation 6. If λ is an eigenvalue, then $Mv - \lambda v = 0 \Rightarrow (M - \lambda I)v = 0 \Rightarrow det(M - \lambda I) = 0$, where I is the identity matrix. So, solutions to $det(M - \lambda I) = 0$ (where λ is unknown) are the eigenvalues.

 $det(M - \lambda I) = 0$ is degree-n polynomial in $\lambda \Rightarrow$ There are n solutions if counting multiplicities.

Fact 7. If M is symmetric, then all solutions are real (no complex numbers).

Theorem 8. Spectral theorem

For symmetric matrix M, \exists vectors v_1, \ldots, v_n and eigenvalues $\lambda_1, \ldots, \lambda_n$ s.t.

1) $||v_i||_2 = 1$ 2) $v_i \cdot v_j = 0$ if $i \neq j$ (orthonormal) 3) $Mv_i = \lambda_i$

Remarks:

- 1) The sorted sequence of eigenvalues, i.e. $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, is unique.
- 2) The set of eigenvectors v_1, \ldots, v_n is not necessarily unique. E.g., if $\lambda_i = \lambda_{i+1}$, then can replace v_i, v_{i+1} with $\frac{v_i + v_{i+1}}{\sqrt{2}}, \frac{v_i v_{i+1}}{\sqrt{2}}$.
- 3) $M = \sum_{i=1}^{n} \lambda_i \cdot v_i \cdot v_i^T$, where $v_i \cdot v_i^T$ is the outer product of vector v_i .
- 4) If $\lambda_1 > \lambda_2 > \cdots > \lambda_n$, i.e., all eigenvalues are strictly different, then the set of eigenvectors $\{v_1, \ldots, v_n\}$ is unique up to taking $\{-v_1, \ldots, -v_n\}$.

Example 9. $M = 0 \Rightarrow \lambda_1, \ldots, \lambda_n = 0$. Any set of n orthonormal vectors is a set of eigenvectors. For example, we can take e_1, e_2, \ldots, e_n , or alternatively we can take $\frac{e_1 + e_2}{\sqrt{2}}$, $\frac{e_1 - e_2}{\sqrt{2}}$, e_3, \ldots, e_n as a set of eigenvectors.

Example 10. $M = I \Rightarrow \lambda_1, \dots, \lambda_n = 1$. Again, any set of n orthonormal vectors is a set of eigenvectors. So, we can take any basis to be the set of orthogonal eigenvectors.

If $M = \sum_{i=1}^{n} \lambda_i \cdot v_i \cdot v_i^T$, where $v_i \cdot v_j = 0$ for $i \neq j$, then the λ 's and v's are the decomposition given by Spectral Theorem.

$$M \cdot v_j = \sum_{i=1}^n \lambda_i \cdot v_i \cdot v_i^T \cdot v_j$$
$$= \sum_{i=1}^n \lambda_i \cdot v_i \cdot \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
$$= \lambda_j \cdot v_j$$

3 Rayleigh Quotients

Definition 11. For vector $x \neq 0$, $R(x) = \frac{x^T M x}{||x||^2}$.

Observation 12. $R(v_i) = \lambda_i$

Proof.

$$R(v_i) = \frac{v_i^T \cdot M \cdot v_i}{||v_i||^2}$$
$$= \frac{v_i^T \cdot \lambda_i \cdot v_i}{||v_i||^2}$$
$$= \lambda_i$$

Theorem 13.

$$\max_{x \neq 0} R(x) = \lambda_1$$

$$\min_{x \neq 0} R(x) = \lambda_n$$

By the above theorem, $v_1 = \underset{x \neq 0}{\operatorname{argmax}} R(x)$.

Proof. Consider $x \neq 0$,

$$R(x) = \frac{x^T \cdot \left[\sum_{i=1}^n \lambda_i \cdot v_i \cdot v_i^T\right] \cdot x}{||x||^2}$$

Since v_1, \ldots, v_n is basis $\Rightarrow \exists \underbrace{\alpha_1, \ldots, \alpha_n}_{\text{unique}}$ s.t.

1)
$$x = \sum_{i=1}^{n} \alpha_i \cdot v_i$$
 2) $||x||^2 = x^T \cdot x = (\sum_{i=1}^{n} \alpha_i \cdot v_i)^T (\sum_{i=1}^{n} \alpha_j \cdot v_j) = \sum_{i=1}^{n} \alpha_i^2$

$$R(x) = \frac{x^T \cdot M \cdot x}{||x||^2}$$

$$= \frac{x^T \cdot M \cdot \sum_{i=1}^n \alpha_i \cdot v_i}{||x||^2}$$

$$= \frac{x^T \cdot \sum_{i=1}^n \alpha_i \cdot \lambda_i \cdot v_i}{||x||^2}$$

$$= \frac{\sum_{i,j} (\alpha_j \cdot v_j)^T \cdot \alpha_i \cdot \lambda_i \cdot v_i}{||x||^2}$$

$$= \sum_{i=1}^n \lambda_i \cdot \alpha_i^2 \cdot \frac{1}{\sum_{i=1}^n \alpha_i^2}$$

$$\leq \max_i \lambda_i = \lambda_1$$

The proof for lower bound is precisely the same, by just replacing the maximum with the minimum in the final inequality. \Box

Theorem 14.

$$\lambda_i = \max_{\substack{x \neq 0 \\ x \perp v_1, \dots, v_{i-1}}} R(x)$$

Proof for this extension theorem is similar to the previous one.