
COMS 4995-2: Advanced Algorithms (Spring’20) Feb 11, 2020

Lecture 7: Polynomial-time algorithms for max-flow (cont.)

Instructor: Alex Andoni Scribes: Asif Mallik, Stoyan Atanassov

1 Reminder: Max-Bottleneck Algorithm

The Max-Bottleneck algorithm is a variation of Ford-Fulkerson, in which each iteration applies an aug-

menting path with the highest possible capacity, i.e. a path P in the residual graph Gf , that has the

maximum possible value (over all paths in Gf ) for δ(P ) = mine∈P (cf (e)).

We proved that, when running Max-Bottleneck:

1. The number of iterations (number of augmenting paths that are applied) for an original graph G

with n nodes, m edges of integer capacity, and maximum edge capacity U , is O(m log nU);

2. The time per iteration (to find an augmenting path with the highest capacity) is O(m logU).

Thus, the total time for Max-Bottleneck is O(m2 logU log nU). Note: in the scribes for the previous

lecture, we used C in lieu of U .

We also mentioned two approaches that could be used to find the highest capacity augmenting path

during each iteration:

• Binary search for the maximum edge capacity for which an s→ t path exists in Gf that includes

only edges of greater than or equal such capacity. This can be illustrated by calling the following

recursive routine with min = 1 and max = U :

find-max-bottleneck(min,max)

1. If min = max then find and return any s → t path in Gf that contains only edges with

capacities ≥ min, return ∅ if no such path exists

2. Let mid = dmax+min
2 e

3. If an s → t path exists in Gf that contains only edges with capacities ≥ mid, then return

find-max-bottleneck(mid,max)

4. Else, return find-max-bottleneck(min,mid− 1)

When using breadth-first search to find s → t paths in Gf above, this approach runs in time

O(m logU).

• Dynamic programming, using a variation of Dykstra’s algorithm, that works in O(m log n) time.

(A summary can be found in Sections 14.1-3 of http://cs.cmu.edu/˜avrim/451f11/lectures/lect1013.pdf ).

1



2 Scaling Algorithm

This algorithm results in similar time as Max-Bottleneck, but adopts a more general approach – instead

of finding and applying an augmenting path repeatedly, it attempts to solve the flow problem by using a

series of graphs with increasingly accurate approximations of the edge capacities in the original graph.

The general idea is to proceed in a number of ”scaling stages”, where we begin by pushing as much

flow as possible along the bigger capacity edges in the original graph, and then, as we fill those up, to

refine the flow by including smaller capacity edges and additional capacity along the already included

edges.

We define the total number of scaling stages that the algorithm employs as:

b = dlog2 Ue

Note: the number of scaling stages is in essence the number of bits sufficient to represent U .

For each scaling stage i, we also define an associated graph:

Gi : with capacities ci(e) =

⌊
c(e)

2b−i

⌋
Note: Gi is basically the original graph G, but with capacities ci(e) equal to only the i most significant

bits of their respective original values c(e).

To illustrate how we build the graphs in each scaling stage, suppose in our original graph G the edge

capacities, represented in binary, are:

c(e1) = 100......1

c(e2) = 001......1

c(e3) = 010......0

......

c(em) = 010......0

In stage 1, we construct graph G1 with capacities equal to just the most significant bit of the original

capacities above: c1(e1) = 1, c1(e2) = 0, c1(e3) = 0, .... G1, thus, includes only edges that have original

capacity of at least U
2 : think of this as a very rough approximation of the edge capacities. We then

proceed to find the maximum flow for G1 using these coarse capacity approximations (note that, if we

multiply back that flow by 2b−i, it will still be a valid flow in the original graph, by virtue or how we

approximated the capacity in G1).

In stage 2, we build graph G2, by expanding the capacity length by one more bit, allowing us now

to consider the two most significant bits of the original capacities in G, resulting in c2(e1) = 2, c2(e2) =

0, c2(e3) = 1, ... (better approximations of the original capacities). We then feed the maximum flow from

stage 1 as the starting flow to now find the maximum flow for G2.

Similarly, in stage 3, we build G3 where we take the three most significant capacity bits, resulting in

capacities c3(e1) = 4, c3(e2) = 1, c3(e3) = 2, ... and we use the maximum flow from stage 2 as the starting

flow to find the maximum flow in G3. And so on.

2



2.1 The Algorithm

1. Set b = log2 U, f
0 = 0

2. For stage i in 1 .. b:

• Find f i = max flow in Gi, starting with flow 2 · f i−1, where f i−1 is the resulting flow from the

previous stage

3. Report flow f b

Note:

• For stage 1 (graph G1), the flows per edge will be either 0 or 1 (since all edge capacities in G1

are equal to only the most significant bit of the edge capacities in G). When we go to stage 2

(graph G2), we multiply those G1 flows by 2, but that is still a valid starting flow for G2 (since the

capacities in G2 are now the first two bits of the capacities in G), etc;

• We use Ford-Fulkerson to find the maximum flow for any Gi graph above, but with a starting flow,

based on the maximum flow found in the preceding stage in the loop.

Claim 1. 2 · f i−1 is a valid flow in graph Gi.

Proof. The proof is by induction on i:

∀e ∈ E : f i−1(e) ≤ ci−1(e)
2 · f i−1(e) ≤ 2 · ci−1(e)

but, since we at least double capacities in each stage : ci−1(e) ≤ ci(e)
therefore : 2 · f i−1(e) ≤ 2 · ci−1(e) ≤ ci(e)

So, doubling the flow from the previous iteration satisfies capacity constraints (note that, obviously, it is

also positive).

It also satisfies flow conservation, since equality of flows from previous iteration would still hold if all

flows are multiplied by 2.

Corollary 2. The Scaling Algorithm is correct.

By construction:

• Each flow that we find is valid

• Flow f b that we compute in the last iteration is the maximum flow in the original graph G, because

it is computed using original capacities (all capacity bits are included in iteration b).

2.2 Runtime Analysis

As mentioned, the number of scaling stages that the algorithm utilizes is:

b = O(logU) (1)

3



For each of these stages, the runtime is basically the runtime of Ford-Fulkerson which, in stage i is

bounded by the number of augmenting paths in Gi, which is itself bounded as follows:

Number of augmenting paths in Gi ≤ |f i| − |2 · f i−1| (2)

This is because, in stage i, we do a ”warm” start with flow |2 · f i−1| from stage i− 1 and then with

each augmenting path, we increase the value of the flow by at least 1 until we reach the maximum possible

flow |f i| (this was already mentioned when we first analyzed Ford-Fulkerson).

To place an upper bound on the difference in equation 2, consider graph Gi−1. By the Min-Flow/Max-

Cut Theorem, it must be that, in graph Gi−1:

∃ s− t cut S, s.t. ci−1(S) = |f i−1| (3)

By how much can the value of this cut increase from stage i− 1 to stage i? For each outgoing edge e

in the s− t cut S above, the capacity increases from ci(e) to ci+1(e), where:

ci(e) =

{
2ci−1(e) if i-th most significant bit of c(e) = 0

2ci−1(e) + 1 if i-th most significant bit of c(e) = 1

This means that the cut capacity of the cut S in graph Gi is:

ci(S) ∈ [2 · ci−1(S), 2 · ci−1(S) +m] (4)

The lower bound above corresponding to the case when for all outgoing edges in S the bit that we

included in stage i is 0, and the upper bound corresponding to the case when for all outgoing edges that

bit was 1 (note that we have at most m edges).

Then:

By Min-Flow/Max-Cut Theorem : |f i| ≤ ci(S)

Adding the upper bound from (4) : |f i| ≤ ci(S) ≤ 2 · ci−1(S) +m

Which is by (3), equivalent to : |f i| ≤ ci(S) ≤ 2 · |f i−1|+m

So, the maximum flow in Gi is at most twice the maximum flow in Gi−1 plus m. Thus, the boundary

for the number of augmenting paths in stage i from equation 2 becomes:

Number of augmenting paths in Gi ≤ |f i| − |2 · f i−1| ≤ m (5)

Note: how, by not starting from zero, but using the flow from graph Gi−1, we effectively reduced

significantly how much the flow can further go up in graph Gi.

Combining the facts that we run O(logU) stages (equation 1), each with at most m iterations of

Ford-Fulkerson (equation 2), and that it takes O(m) time to find an augmenting path (say, by using

breadth-first search), for the running time of the Scaling Algorithm, we have:

Total Time : O(m ·m · logU)

This is close to the running time of Max-Bottleneck, only better by a log factor. But this algorithm

4



illustrates a general scaling approach that can be applicable to other problems:

• We begin by solving a problem very ”coarsely”;

• Subsequently, we refine it iteratively;

• In each iteration, we use the results from the previous one.

3 Shortest Augmenting Path Algorithm

In this section, we look at a strongly polynomial time algorithm which depends only on m and n. It does

not depend on U , the maximum capacity of the graph. Therefore, the time complexity of this algorithm

is (m · n)O(1),

The advantage for using such algorithm is when U is very large as is the case when the capacities are

real numbers. In this case instead of working with integers, we works with the real word model which

assumes the following:

• numbers/registers/words are real numbers

• reasonable operations on these registers are possible in constant time such as min, max, addition,

subtraction and multiplication

This class of algorithms are often known as combinatorial algorithms as it does not take into account

the capacities and instead runs on the structure of the graph itself.

3.1 The Algorithm

• Run the Ford-Fulkerson algorithm except instead of finding the augmenting path with the maximum

flow, find the shortest augmenting path at each step of the algorithm

• The length of the augmenting path is defined as the number of hops that are required to get from

s to t in a given path

Correctness: Follows immediately from the correctness of Ford-Fulkerson algorithm because here

we are essentially replacing any positive capacities with 1.

3.2 Runtime Analysis

Definition 3. Let dGf
(s, v) be the minimum distance from s to v in the graph Gf where Gf is the residual

graph for the flow f

Claim 4. Fix a flow f . Let P be the shortest augmenting path in Gf . Let f ′ be the flow after augmenting

P . Then

dGf
(s, v) ≤ dGf ′ (s, v)

5



Proof. The proof is by contradiction. We use the shorthands d′ for dGf ′ and d for dGf
. Suppose,

A = {v : d′(s, v) < d(s, v)} 6= ∅

In that case, there must exist a minimizer v ∈ A of d′(s, v). Consider the shortest path from s to v

in Gf ′ so that len(P ′) = d′(s, v).

s

w v

t

Suppose w is vertex immediately preceding v in P ′. So, it immediately follows that

d′(s, v) = d′(s, w) + 1

By minimality of v ∈ A, w /∈ A. Therefore

d′(s, w) ≥ d(s, w)

=⇒ d(s, v) > d′(s, v) = d′(s, w) + 1 ≥ d(s, w) + 1

However, this implies that there exists no edge from w to v in Gf as if there was it would mean

d(s, v) ≤ d(s, w) + 1

which clearly is not true from the previous inequality. Thus, (v, w) must have been in the shortest

augmenting path P . Thus,

d(s, w) = d(s, v) + 1 > d′(s, v) + 1 = d′(s, w) + 2 ≥ d(s, w) + 2

which is clearly a contradiction.

Observation 5. ∀v, dGf
(s, v) ≤ n

Claim 6. For all edge (v, w) it is saturated at most n
2 times.

6



Proof. Let P be the that saturates v → w. In which case:

d(s, w) = d(s, v) + 1

s

w v

t

after augmenting P , the vertex v → w no longer exists, but the vertex w → w does.

s

w v

t

Next time we saturate the vertex (v, w) we do so in the direction w → v, as such:

d′(s, v) = d′(s, w) + 1 ≥ d(s, w) + 1 = d(s, v) + 2

due to the non-decreasing feature of distances with each augmentation. Therefore, each time this vertex

is augmented, the distance to v increases by 2. Obviously, the distance cannot exceed n, therefore, the

vertex can be only augmented at most n
2 times.

Therefore,

7



Number of paths augmented ≤ Number of edges ·Max number of times each can be augmented =
m · n

2

Since the running time for finding the shortest augmented path at each iteration is O(m) due to

breadth-first search and the number of iteration is bounded by mn
2 , the total time of the algorithm is

O(m2n)

3.3 Some Closing Remarks

There are faster max-flow algorithms than the ones we covered:

• The fastest algorithm (from the 1990’s) is combinatorial and runs in time O(m1.5 log n logU). The

main idea it employs is to ”do more work” per iteration, which can be illustrated, in the context of

Shortest Augmenting Path, roughly as follows:

– Originally, we took an augmenting path and we incremented along it;

– But, to find that augmenting path, we explored a large portion of the graph, thus finding many

more shortest paths;

– Maybe we can augment along all those shortest paths at the same time.

• Allowing for restrictions on capacity, there are more recent algorithms which utilize both combina-

torics and continuous optimization. These algorithms achieve time of Õ(m
10
7 ) (Ma̧dry 2011), when

U = O(1) (capacities are constant), and Õ(m
√
n logU) (Lee, Sidford 2012).

4 Spectral Graph Theory

Definition 7. Let G be an undirected unweighted graph. AG is then called the adjacency matrix of G

where

(AG)ij =

{
1 if there exists edge (i, j)

0 otherwise

Observation 8. AG is a symmetric matrix with 0 diagonal

Example 9. The following graph G

1

2 3

has the adjacency matrix

AG =

0 1 0

1 0 1

0 1 0


8



Definition 10. DG is a diagonal matrix if

(DG)ij =

{
degree of i i = j

0 otherwise

Example 11. The following is an example of a diagonal matrix

DG =

1 0 0

0 2 0

0 0 1


Motivations for Spectral Graph Theory:

• Spectral analysis on adjacency matrices of graphs to find theoretical properties of such matrices

• Applications such as random walks and diffusion on graphs

9


