
COMS 4995-2: Advanced Algorithms (Spring’20) Feb 4, 2020

Lecture 5: Max-flow Problem, Ford-Fulkerson Algorithm

Instructor: Alex Andoni Scribes: Luis Lopez, Jorge Solis

1 Max-Flow Problem

This lecture we begin our discussion of the Max-flow problem, which is one of an important class of graph

problems. We will consider directed graphs of the form G = (V,E, c), where each edge e ∈ E of the

graph has a capacity given by the function c : E → R+. We will denote the starting vertex by s and the

terminal vertex by t, and we will seek to transport some supply, like water or other commodity, from s

to t via a network of pipes or other conduits modeled by the edges E of the graph. Furthermore, we seek

to maximize the total supply that leaves vertex s and arrives at vertex t, where the capacities represent

volume per unit time, etc.

s 2

3 4

t

4

5

5

3

6
2

Note that during computation of a solution, we may label edges with ratios, representing the portion of

capacity being utilized given by a flow, which we will represent by a function f : E → R+ that maps an

edge to the corresponding volume traveling through it.

s 2

3 4

t

2
4

1
5

1
5

1
3

1
6

2
2

This flow is subject to constraints that restrict feasible solutions to the problem:

1. Non-negativity: ∀ e ∈ E
f(e) ≥ 0 (1)

2. Capacity: ∀ e ∈ E
f(e) ≤ c(e) (2)

1

3. Conservation of Flow: ∀ v ∈ V, v 6= s, t∑
(v,u)∈E

f(v, u) =
∑

(u,v)∈E

f(u, v) (3)

In the summations above, we identify the function f(·, ·) : V × V → R+ defined on ordered pairs of

vertices in V with the function f(·) : E → R+ defined on the set of edges.

Then, we may define the objective value function or |f |:

|f | =
∑

(s,u)∈E

f(s, u)−
∑

(u,s)∈E

f(u, s) (4)

Where, as specified above, the start vertex s (also referred to as the source) is not required to obey

the conservation of flow constraint, and thus may have positive net flow traveling across the outward

facing edges in its neighborhood. This quantity may also be called the value flow.

Now, we may formally define the Max-flow problem:

Problem: Find a flow f that maximizes |f |.

To recap, a solution to the problem is modeled as a flow vector f that satisfies the constraint of the

problem: it satisfies each of the constraints (1), (2), (3) defined above. In other words, each component

of the vector f(e), corresponding to an edge in E, satisfies inequalities of the form 0 ≤ f(e) ≤ c(e), and

if a vertex is not s nor t, the sum of flows leaving from a vertex must equal the sum of flows entering

that vertex. This problem was covered to some extent in COMS 4231: Analysis of Algorithms, so we will

discuss solutions encountered during that discussion, but starting Thursday, Feb 6th, we will consider

algorithms not seen there.

Our starting point in the development of an algorithm will be to develop the structure of the prob-

lem further, beginning with the following result:

Theorem 1. Decomposition Theorem: For any flow f , we may decompose this flow into a sum of

path flows and cycle flows.

We define path flows and cycle flows as follows:

Path Flow A path flow is a flow that does not have vertices where flow either joins or bifurcates

along the sequence of edges composing the path. Therefore the flow traveling across each edge in the

path flow remains constant.

For a path flow, the flow on each edge is equal, so if P is the set of edges composing a path flow

fP , then ∀ e ∈ P, fP (e) = |fP |.

2

Cycle Flow A cycle flow is a flow that sends supply on a path resulting in zero value flow.

A cycle flow is a flow that does not have positive net flow emanating from the source s. One can consider

a sequence of edges that begins and ends at the same vertex, resulting in flow that circuits through some

convoluted path that forms a cycle or a combination of cycles (essentially wasteful or useless).

What does this theorem mean for us? Essentially, for any flow f , there exist path flows fP1 , fP2 , . . . , fPk

corresponding to paths P1, P2, . . . , Pk and cycle flows fC1 , fC2 , . . . , fCl
with accompanying cycles C1, C2, . . . , Cl

such that

f =
k∑

i=1

fPi +
l∑

j=1

fCj (5)

The point of this discussion is to observe that this is true for all flow vectors, including not just max flows.

Note: If calling f a vector and then calling f a function is confusing, think about how a linear trans-

formation T : V1 → V2 between vector spaces V1, V2 is determined by the images T (ei) ∈ V2 of the basis

elements ei ∈ V1 of the vector space (e.g., a 2 × 2 matrix mapping R2 to R2 is determined by its two

columns, in fact the images of the unit vectors e1 and e2). Thus, one can verify that the set of linear

transformations on a vector space forms a vector space: i.e., the set of flows on a graph form a vector

space of dimension |E|, where the flow f(e) at an edge e is a component of the vector f .

Now, to a proof of the Decomposition Theorem:

Proof:

1. Suppose the value flow |f | > 0 for a flow f (so there is an outward facing edge at s with some

positive flow).

This implies that the flow must leave the destination vertex of said edge according to the flow

conservation constraints, thus propagating the flow through the graph, until some positive flow

arrives at t.

Let this sequence of edges be denoted P = {e1, e2, . . . , en} originating at s and terminating at t in

the flow f , and define

δ(P) = mine∈P f(e)

Next, define

fP (e) = δ(P) ·

{
1, if e ∈ P ;

0, otherwise;

Then, as long as fP is a path flow, one can verify that f ′ = f − fP by checking non-negativity,

capacity, and flow conservation constraints.

But what if fP is not a path flow? Then it may be the case after this operation that the new flow

3

f ′ does not satisfy flow conservation constraints. Consider the following example:

s 2 3

4

t
1 2

11

1

2. If we have found a cycle C = {e1, e2, . . . , em} such that ∀ e ∈ C, f(e) > 0, however, we can just

carry out the same process:

δ(C) = mine∈Cc(e)

fC(e) = δ(C) ·

{
1, if e ∈ C;

0, otherwise;

We then obtain the new flow f ′ = f − fC when fC is a cycle flow.

Thus, if given a flow f such that |f | = 0 but ∃ e ∈ E such that f(e) > 0, we may find the cycle

traversed by the flow and decompose it as above.

Now, given some arbitrary flow f , what are the upper bounds on the number of times we may decompose

this flow? That is, subtract some path or cycle flow from f until the resulting flow f ′ is zero everywhere:

∀ e ∈ E, f ′(e) = 0.

Observation: Each time we conduct this decomposition process, we set the value of the flow at some

edge in the graph to 0. More precisely, the number of edges e ∈ E with flow f(e) = 0 increases by at

least one for each iteration. We are considering finite graphs, so after finitely many iterations, the flow at

each edge in the graph will be 0, and we will be done. Therefore, we have an upper bound of the number

of iterations necessary to decompose a flow: |E|.

OK. Now, using this theorem, we may start designing algorithms to solve the problem.

2 Ford-Fulkerson Algorithm

Proto-Alg 1:

1. Find a path from s→ t using edges with c(e) > 0.

Claim: By the decomposition theorem, this algorithm will find a path: if ∃ f, |f | > 0, then this algo-

rithm will return a path flow fP with fP > 0

Can we do better? If we modify the edge capacities to reflect the capacity usage of fP , we can run

this algorithm again and possibly find another flow.

Proto-Alg 2:

4

1. Iteratively find a path P from s → t using edges with cf (e) = c(e) − f(e), where f is the current

flow (cf depends on the current flow, and is named the residual capacity).

2. Define, as before, δ(P) = mine∈P cf (e), and

fP (e) = δ(P) ·

{
1, if e ∈ P ;

0, otherwise;

We then assign new values to the flow at each edge:

fnew = fold + fP

Both flows satisfy non-negativity, capacity, and flow conservation constraints (verify this). Notice

that by the definition of the residual capacities the original capacities are never violated.

3. Terminate when no s→ t paths can be found using edges with cf (e) > 0.

Is it true that this algorithm will always obtain the max flow? Consider the following graph:

s t

1

1

1

1
1

Thus, we seek a modification of the algorithm that will reflect an ability to ”push back” flow in directions

opposite to the current flow, by sending flow across edges with opposite direction, possibly negating the

net flow between two vertices.

Residual Graph: Gf is the residual graph for flow f , where:

∀ (u, v) ∈ E : cf (u, v) = c(u, v)− f(u, v)

if f(u, v) > 0 : cf (v, u) = f(u, v)
(6)

After modifying the graph in the above way, a new s→ t path P found that increases flow by ”pushing

back” flow along an edge such that ∀ e ∈ P, cf (e) > 0 is is called an augmenting path.

We thus arrive at our desired algorithm:

Ford-Fulkerson:

1. Initialize: set f(e) = 0 for all e ∈ E, Gf = G.

5

2. While ∃ an s→ t path P in Gf such that ∀ e ∈ E, cf (e) > 0:

(a) δ(P) = mine∈P cf (e)

(b) ∀(u, v) ∈ P :

if f(u, v) > 0, then f(v, u) = f(v, u)− δ(P)

else, f(u, v) = f(u, v) + δ(P)

(c) Recompute Gf .

This algorithm finds positive flows if they exist, like the prototype algorithms, but it is more versatile in

that if flow along an edge is increased in one iteration, it may be decreased or negated in a later iteration

by an augmenting path, so individual path computed in particular iterations do not irreversibly affect

the final result.

Claim 1: The final result is valid flow.

Proof By construction, the flow along augmenting paths computed in each iteration respect our con-

straints.

Claim 2: FF algorithm terminates with a max flow.

Proof We know that if |f | = 0, then the max flow must be zero, otherwise our algorithm would have

found a flow.

This does not prove the result, but consider the following to be discussed further on Thursday, Feb

6th:

1. Let the set S be defined as the set of vertices reachable from s:

S = {v ∈ V : ∃ s→ v path }
If |f | = 0, there is no s→ t path: t 6∈ S
That is, the set of vertices V can be cut into two disjoint sets: S, V − S.

2. Given a subset of vertices S ⊂ V, s ∈ S, t 6∈ S, we may define the capacity of S:

c(S) ,
∑

u∈S,v 6∈S
c(u, v)

In other words, the capacity of S is the sum of capacities of edges leaving S and arriving at V − S.

Claim: (Max-flow / Min-cut duality) The value of a max-flow is equal to the minimum capacity of a set

S ⊂ V, s ∈ S, t 6∈ S. To be continued.

6

