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1 Background

The original motivation behind Consistent Hashing arose from the need for web caching. Consider a fixed

universe [U ] of items (files in this case). The size of the universe would be very large ≈ 2(length of file).

Given some subset of files S ⊂ U , with |S| = m. We want to cache these m items in n servers (buckets),

where n � m. It is expected that the load on each server will roughly be ≈ m
n . The assignment of files

to servers can be done by a hash function h : [U ]→ [n].

Goal: We want a mechanism to efficiently distribute the items when n is increasing (adding new servers

to the system).

Problem: If we use hashing as a solution, with a hash function hn, for a particular item x, we have:

hn(x) = i

On adding a new server, a new hash function hn+1 is used which could be randomized or from the family

of hash functions. Then,

hn+1(x) 6= i

with a probability ≈ 1− 1
n+1 .

This implies that most of the items would be rehashed and moved whenever a new server is added.

This is inefficient. When adding server n + 1, ideally we only want to move the items that map to it.

2 Consistent Hashing

Consider a random hash function for the items,

h : [U ]→ [M ], where M � m,n.

Also, consider a second random hash function for the servers,

g : [N ]→ [M ]

where N is an upper bound on the number of servers n.
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[M ] can be thought of as an approximation for mapping to an interval of real numbers in [0, 1], since

computers cannot represent reals precisely.

Figure 1: Circular representation for Consistent Hashing

(Stanford CS168: The Modern Algorithmic Toolbox, Lecture 1: Introduction and Consistent Hashing,

Tim Roughgarden & Gregory Valiant)

We can visualize a circle with each position representing a bucket in [M ]. The set of items S =

{x0, x1, x2, ..., xm−1} and the set of servers T = {s0, s1, s2, ..., sn−1} are all hashed to the corresponding

buckets.

The idea is to assign each object to the first server on its right. Thus, a server si would be assigned the set

of items Li between its location and the location of the preceding server on the circular representation:

Li = {x ∈ S, s.t. g(sj) < h(x) ≤ g(si)}

where g(sj), j ∈ [n] is maximal g(sj) to the left of g(si).

Claim 1. When a new server is added, we only need to move the items which it is servicing.

Proof. In our initial assignment (Figure 1), we see that items x1 and x2 are serviced by server s0. Now

we introduce a new server s3 (Figure 2). As per the defined mechanism, the first server on the right of x2

is now s3. For all other items, there is no change in this property and the servers servicing them remain

unchanged. Hence, the only reassignment that needs to be done is to item x2 which will be serviced by

the new server. So only x2 is moved from server s0 to s3.
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Figure 2: Circular representation after adding new server s3
(Stanford CS168: The Modern Algorithmic Toolbox, Lecture 1: Introduction and Consistent Hashing,

Tim Roughgarden & Gregory Valiant)

Claim 2. For n servers, the expected load on a server si is given by:

E[|Li|] =
m

n

Proof. This can be proved by the following two observations:

1. By symmetry,

E[|Li|] = E[|Lj |] ∀ i, j ∈ [n]

2. By definition,

m = E
[ n−1∑

i=0

|Li|
]

= n · E[|Li|] ∀ i ∈ [n] (from observation 1)

Thus,

=⇒ E[|Li|] =
m

n

(Note: In the original hashing scheme, when m
n is sufficiently large (at least logarithmic), it can be proved

that the number of items in each server is ≈ m
n , up to a factor close to 1, with high probability.)

While the expected load of each server is m
n , it is possible that when n increases to n + 1, there is one

server whose load drops by a factor of 2 roughly. This is a relatively large variance.
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2.1 Analysis of Concentration

In order to understand how well the algorithm concentrates items onto the servers, we need to compute

the variance of the server load li , |Li|. Since all servers are equivalent, by symmetry, we compute this

for load l1.

Var[l1] = E[l21]− (E[l1])2

= E[l21]− (
m

n
)2

Now,

E
h,g

[l21] = E
g

[
E
h

[(∑
x∈S

I[x ∈ L1]

)2]]
= E

g

[ ∑
x,y∈S

(
E
h

[
I[x ∈ L1] · I[y ∈ L1]

]
︸ ︷︷ ︸

depends on width of interval between servers

)]

We define the random variable w to represent the distance to the server to the left of server 1. Then,

E
h,w

[l21] = E
w

[ ∑
x,y∈S

(
E
h

[
I[x ∈ L1] · I[y ∈ L1]

])]

= E
w

[
m

w

M
+ m(m− 1)(

w

M
)2

]
≤ m

n
+ E

w

[
m2w2

M2

]
The second line in the above equation is obtained by grouping the expectations in the summation in two

parts. The first group consists of expectations in which x and y are same. There are m such expecta-

tions(one for each item in S) and their value is w
M . The remaining expectations with different x and y

are placed in the second group. Since distinct x and y are independent, these expectations are equal to

( w
M )2.

Ew[m w
M ] is the expectation of the total number of items in server s1. This can be thought of as each of

the m items being assigned to server s1 with probability w
M . We know this to be m

n .

Ew[m
2w2

M2 ] still needs to be computed:

E
w

[
w2

M2
] =

∫
x∈[0,1]

Pr
w

[x < (w/M)2] =

∫
x∈[0,1]

Pr
w

[w/M >
√
x] =

∫
x∈[0,1]

(1−
√
x)m−1,

as that’s the probability that all the other n− 1 servers do not fall in the w interval preceding the server

1. Hence, for y =
√
x, we have that

E
w

[
w2

M2
] =

∫
y∈[0,1]

2(1− y)n−1y ≤ O(1/n2)
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Hence we obtain:

Claim 3.

E[l2i ] ≤ O((
m

n
)2)

Applying Chebyshev’s bound, with constant probability, we have:

l1 =
m

n
±O(

√
Var(l1))

=
m

n
±O(

m

n
)

We have same problem as before. The variance is roughly proportional to the expectation. So there is

significant deviation and the load for each server can vary by a constant factor. It can also not guarantee

that a server will not have empty load.

3 Variance Reduced Scheme

We fix a parameter k to control the reduction in variance (similar to the Morris+ algorithm). Instead of

using the previous hash function g, we define a new function:

g : [N ]× [k]→ [M ]

This can be visualized as each server having k copies. Any server si services items hashed between each

of g(si,1), g(si,2), ..., g(si,k) and the positions of the servers preceding them.

Figure 3: Representation of virtual server copies with k = 4

(Stanford CS168: The Modern Algorithmic Toolbox, Lecture 1: Introduction and Consistent Hashing,

Tim Roughgarden & Gregory Valiant)

This method increases the complexity when a new server is added. We will have to transfer the desired

items to all the copies of the new server from the existing servers. In worst case, we might have to transfer
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items from k different servers to the k copies of the new server. However, this also reduces the variance in

the size of servers. This is because the items for the new server are fetched from various servers(instead

of a singe) and hence the size of any existing server doesn’t reduce drastically(as was the case previously).

Let vr load be the load on a server in the variance reduced scheme.

Claim 4.

var(vr load) ≤ O(var/k)

If lvr1 is the load on server 1 in the variance reduced scheme, we can write

lvr1 =
m

n
±O(

m

n
).

1√
k

4 Introduction to Graphs

A graph can be defined as a set of vertices(V) and edges(E) between the vertices where each edge can

have an associated weight/length(W) and a capacity(C).

G = (V,E,W : E → R,C : E → R+)

There are some basic graph algorithms like breadth-first search, Dijkstra’s algorithm which are used to

find shortest paths. These algorithms are good to know but won’t be covered in this class. Such problems

can be solved in linear time in terms of number of edges and nodes.

We will be focusing on algorithms like maximum flow which can’t be solved in linear time. In the next

lecture we will define the maximum flow problem and talk about a basic solution using the Ford-Fulkerson

algorithms. Then we will discuss how to solve it faster than Ford-Fulkerson.
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