
COMS 4995-2: Advanced Algorithms (Spring ’20) Jan 28, 2020

Lecture 3: Dictionary via Hashing, Perfect Hashing

Instructor: Alex Andoni Scribes: Benjamin Most, Sian Lee Kitt

1 Background

We have some fixed universe (a large set of numbers) [U]={1, 2, ..., U}.

Problem: Given some subset S ⊂ U , with |S| = m, and some x ∈ U , report if x ∈ S.

Last class, we discussed non-hashing solutions to this problem, including storing the entirety of S,

using a Binary Search Tree, and using a bit array to store whether or not a value x ∈ U is in S.

In this lecture, we discuss how to solve this problem using hashing.

Background terms/notation:

Collisions occur when our hash functions maps two elements into the same cell.

The expression [k] for some integer k refers to the set {1, 2, ..., k}.

As displayed in the image above, we will consider hash functions mapping from [U] to [n]. If U > n ·m
for some number m, then ∃i ∈ [n] such that |h−1(i)| > m, where h is our hash function.

2 Hashing

There are multiple ways we could solve the problem explained above using hashing.

1

2.1 Knuth’s Solution

Knuth suggests the hash function

h(x) = b{
√

5− 1

2
x)}nc

where the curly brackets denote taking the fractional part of the expression they contain.

Because it is deterministic, this hash function would perform better in some cases than in others, and

in some scenarios it might lead to a high number of collisions.

2.2 Solution 1: Random Function

For every possible input x, we could randomly select the value of h(x) and avoid all collisions. In this

case, the average query time would be the expected value for the number of collisions we will get on

computing the hash of x, which we denote as Cx. Therefore,

En[Cx] = En[# of y ∈ S, y 6= x, h(y) = h(x)]

= En[
∑
y∈S
y 6=x

1[h(y) = h(x)]]

≤ m · 1

n

(1)

So E[query time] = O(1) as long as n ≥ m.

2.3 Solution 2: Less random

Definition: H family of h : [U]→ [n] is universal if:

∀x 6= y, Pr
h∈H

[h(x) = h(y)] =
1

n
.

Example: The family containing all hash functions is universal.

Fact: There exists a universal hash function family H such that lg|H| = O(lg U).

Definition: H is α-almost-universal for α ≥ 1 if:

Pr
h∈H

[h(x) = h(y)] ≤ α

n

.

Example [Dietzfelbinger et al., ’97]:

∀a ∈ [U], ha(x) = b(a · x)%U)/nc.

2

H = {ha, a ∈ U odd}.

Fact: H is 2-almost-universal. This is equivalent to:

∀x 6= y ∈ [U], P r
a∈U odd

[ha(x) = ha(y)] ≤ 2

n

3 Perfect Hashing

The goal of perfect hashing is to have zero collisions.

We want O(1) query time. Define:

C ,
∑
x∈S

Cx (2)

Zero collision count, C = 0, means that every bucket has at most one element.

3.1 Achieving a Zero Collision Count

We have that:

E[C] = E[
∑
x∈S

Cx] ≤ m2

n
(3)

Recall: E[Cx] ≤ m/n.

If we fix n = 4m2, then

E[C] ≤ 1

4
.

By Markov bound Pr[C >
3

4
] ≤ 1

3

With a probability ≥ 2

3
, C ≤ 3

4

but since C ∈ Z then C = 0.

3

3.2 Solution 3

The algorithm is as follows:

At preprocessing, given input S, pick h randomly

If C = 0, done.

Else, try again.

Query time: O(1) deterministically

Space: O(m2)

3.3 Solution 4: (Perfect Hashing)

We have two levels of hash functions: h : [U]→ [n] (1st level)

hi : [U]→ [ni] (2nd level) where i ∈ [n] and 1 ≤ ni ≤ m

For Solution 4, we will use a two-level hashing system, with a goal of having no collisions in our

2nd-level arrays.

Our first-level hash function, h, will take elements of [U] as input and return an output in [n]. We

will have use an array A of length n, with n pointers to subarrays A1, A2, ..., An.

Our second-level hash functions, h1, h2, ..., hn, will take an element of [U] as input and return an

element of [ni], where ni is the length of subarray Ai. With this two-level hashing scheme, we can use

h to find which subarray to access, then use the appropriate hi to find the value we seek within that

subarray, with no collisions in the subarrays giving us perfect hashing.

4

Pick h:[U] → [n]

Let si = number of elements x ∈ S s.t. h(x) = i

ni , 4s2i

At preprocessing for each i ∈ [n],

if ∃ collisions in Ai, resample hi until there are no collisions.

(With probability ≥ 2

3
there would be no collisions.)

Once there are no collisions for i, move on to i+ 1

Query time: O(1) +O(1) =⇒ O(1). O(1) for first level hashing and O(1) for second level hashing since

there are no collisions. This is deterministic.

Space: O(1) +O(n) +O(n) +O(
∑

i∈[n] ni) = O(n) +O(
∑

i∈[n] s
2
i) where the hash function requires space

O(1), the first-level array requires space O(n), and each hi requires space O(1) (so all hi functions require

space O(n)). The O(
∑

i∈[n] s
2
i) term refers to the sum of the space required by each subarray.

Note that we approximate n = m.

Claim: E[
∑

i s
2
i] = O(m).

Proof.

E[
∑
i

s2i] = E[
n∑

i=1

Si(Si − 1)] + E[
∑
i

Si]

(where si(si − 1) is the number of collisions in bucket i)

= E[C] +m

≤ m2

n
+m

≤ O(m) as long as n = Ω(m)

So E[space] = O(m).

By Markov, space ≤ O(m) with probability ≥ 1
2 .

4 Consistent Hashing

Consider a scenario in which we have m objects, n servers (similar to buckets) where n is much smaller

than n (n � m).

E[Cx] ≤ m
n . where Cx = objects per server.

E[x ∈ S(Server) s.t. h(x) = i] ≤ m
n ∀i ∈ [n].

5

But servers cannot last forever. Say we want to rebalance the network with new servers. We need to

move a bunch of items to a new server.

For example: h : [U]→ [n], h′ : [U]→ [n+ 1].

Items will completely reshuffle, and about 1− 1
n of the total items will be moved.

The goal is to have no collisions in the second level array. If size of second level using 4m2, then no

collisions.

6

