
COMS 4995-2: Advanced Algorithms (Spring’20) April 23, 2020

Lecture 24: Nearest Neighbor Search (high-dimensional)

Instructor: Alex Andoni Scribes: Alper Cakan, Alexandre Lamy

1 Nearest Neighbor Search Overview

In this lecture we study the Nearest Neighbor Search (NNS) problem. Formally the problem is defined

as follows:

Preprocess: a set P of points.

Query: given a query point q, find p∗ ∈ P with the smallest distance to q.

This problem has a lot of practical importance. It is a primitive for calculating all similar pairs, as well

as for various clustering problems. In practice, NNS is used for finding pairs of similar images in a large

image set, for signal processing, for bioinformatics, etc.

1.1 Easy versions of NNS

Exact match

If instead of looking for the nearest neighbor, we simply want to look for an exact match, then the problem

reduces to the Dictionary problem (which we studied at the beginning of the class). Any solution to the

Dictionary problem (such as a hash table) would then work. Thus we could get O(n) preprocessing time

and space, and O(1) query time.

1D case

In the 1D case, i.e. when the dataset P is a subset of R, the NNS problem can be solved by a simple sort

and binary search. Specifically we can sort P in the preprocessing step and then do a binary search for

q during queries. This gives a O(n) space and O(log n) query time algorithm.

1.2 High Dimensional Exact NNS

Now let us consider the case where P ⊆ Rd (one should be thinking of both a large n and d, something

like n = 1, 000, 000, 000 and d = 400). We start by showing two naive solutions to the NNS problem.

Ideally we would like constant or logarithmic query time with small space requirement.

No indexing

The first solution is two just store the raw unprocessed data and then, for each query, calculate the

distances to each of the n points and return the point with the smallest distance. This solution use only

O(nd) space (which is optimal) but also has O(nd) query time, which is much too high. The issue here

is that, in a sense, the data is “underprepared”.

Full indexing

1



The second naive solution is to store the answers to all possible queries (i.e. for every point q ∈ Rd store

the closest point in P ). Afterwards, we can answer any query in O(d) time by doing a single lookup.

However, this requires 2d space which is untractable for large d (say d >> log n). In contrast to the

previous solution, here the data is “overprepared”.

Other solutions

With the above results in mind, we have to wonder whether it is possible to do better than the first (no

indexing) solution while keeping the space requirement reasonable. For example, we can ask whether

there exists a solution using O(n2) space and O(n.99) time (or really O(n1−ε) for any ε). Unfortunately,

[Williams’04] showed that if this was possible (for large d), it would refute a strong version of P 6= NP

conjecture.

2 Approximate Near Neighbor Search

Given the difficulty of the exact NNS problem, we try to look at a relaxed version instead. Formally, the

Approximate Near Neighbor Search (ANNS) problem is as follows (for parameters r and c):

Preprocess: a set P of points.

Query: given a query point q, if there exists p ∈ P such that the distance between p and q is smaller

than r, then the algorithm should return a point p′ ∈ P such that the distance between p′ and q is smaller

than cr.

Intuitively, there are two relaxations that differentiate ANNS from NNS. First, the problem asks for

a near neighbor (as characterized by r) rather than the nearest neighbor. This difference is actually

relatively unimportant because it is possible to use a near neighbor search algorithm to solve the nearest

neighbor search problem. The second difference is that we allow a gap (as characterized by c) so that

points at a distance between r and cr from q can be viewed either as similar or as dissimilar. This is the

“approximate” part of the new problem. Note that the problem should get easier as c gets larger, so we

expect running time and space cost to be inversely related to c.

3 Locality Sensitive Hashing

One approach to ANNS is to use locality sensitive hashing. Ideally, we want similar points to hash to the

same value. More formally, a map g on Rd such that for any q, p, p′

• ‖q − p‖ ≤ r =⇒ g(q) = g(p)

• ‖q − p′‖ > cr =⇒ g(q) 6= g(p′)

However, deterministic version is too restrictive. Instead consider the randomized version. For any q, p, p′

• ‖q − p‖ ≤ r =⇒ P1 = Pr[g(q) = g(p)] is not too low

• ‖q − p′‖ > cr =⇒ P2 = Pr[g(q) = g(p′)] is low

2



Note that the probabilities are over random choice of g from a family, not over the points q, p, p′.

One way to construct such g is using several hash tables. In fact, use nρ hash tables where ρ = log(1/P1)
log(1/P2)

.

Hash function g is usually a concatenation of primitive functions. That is, g(p) = 〈h1(p), h2(p), . . . , hk(p)〉
For example, consider the Hamming metric over {0, 1}d and define h(p) = pj where j is random (picked

before seeing the data). Then, g(p) is just a projection on k random bits and

Pr[h(p) = h(q)] = 1− Ham(p, q)

d

P1 = 1− r

d
≈ e−r/d

P2 = 1− cr

d
≈ e−cr/d

Hence,

ρ =
log(1/P1)

log(1/P2)
=

r/d

cr/d
=

1

c

Remember that we are actually interested in ρ of g, but since the h that comprise g are independent, we

just get a factor of k in both nominator and denominator of ρ of g, and they cancel out.

Now let’s construct the actual algorithm that uses g.

Data structure Just L = nρ hash tables. Each table uses a fresh random function and we hash all

dataset points to the table.

gi(p) = 〈hi,1(p), hi,2(p), . . . , hi,k(p)〉 for i ∈ [L]

Query Check for collisions in each table until we see a point within distance cr

Guarantees Space is O(n1+ρ) since we have nρ hash tables. Query time is O(np · (k + d)) = O(np · d).

Finally, the probability of success is 50%.

Let’s choose the parameters L and k. Remember that P k2 is the probability of collision of far pairs and

P k1 is the probability of collision of close pairs. Therefore, set k = 1
n so that we get ≥ nP

1/n
2 = 1 false

positives in expectation. Then, by definition P k1 = (P ρ2 )k = 1
nρ = 1

L . Hence, L repetitions suffice.

Now that we have set the parameters, let’s move onto correctness. First of all, remember that we don’t

care about the case when there is no r-near neighbor. So, let p∗ be an r-near neighbor. The algorithm

fails when p∗ is not in any of the tables gi(q). So,

Pr[algorithm fails] = (1− P k1 )L = (1− 1

nρ
)(n

ρ) ≤ 1

e

Finally, the runtime. It is dominated by hash function evaluations (O(L · k)) and distance computations

to the points in buckets. For the distance computations, we only need to worry about far points (distance

> cr). In a single hash table, we have that the probability a far point collides ≥ P k2 = 1
n . Hence, the

expected number of far points in a single bucket is n 1
n = 1. Going up to L hash tables, we get L far

points in expectation. Summing everything up, we get O(Lk) +O(Ld) = O(nρd) in expectation.

3



[Datar-Indyk-Immorlica-Mirrokni’04] and [A.-Indyk’06] shows that for the Euclidean space, we can do

n1+ρ space and nρ time with ρ ≈ 1
c2

. Getting something better than this requires data-dependence

([Motwani-Naor-Panigrahy’06, O’Donell-Wu-Zhou’11] for the data-independent lower bound, [A-Indyk-

Nguyen-Razenshteyn’14], [A-Razenshteyn’15] for data-dependent construction).

4


