
COMS 4995-2: Advanced Algorithms (Spring’20) Apr 21, 2020

Lecture Lecture 23: Parallel models, MPC model

Instructor: Alex Andoni Scribes: Wang Yao, Zhengping Jiang

1 Introduction

Today’s lecture is about

• PRAM

• MPC

2 Parallel Randomized Access Machine (PRAM)

2.1 PRAM:

- P processors

- Shared memory

- Synchronized

Now a natural question here is about confidence. Is it allowed for two processors to read the same

location at the same time? Is it allowed for two processors to write the same location at the same time?

This leads to 4 different sub-type architectures: E/C-R-E/C-W, where E stands for exclusive and

C stands for concurrent. Now the question is about the performances of these 4 architectures.

2.2 Performance Measure:

- Parallel time (≈ Depth of circuit)

- Work (≈ Size of circuit)

Example 1. Computing XOR for n bits

On EREW we need O(log n) time

Lower bound: Even on CRCW we need Ω(logn
log logn) time.

3 Massive Parallel Computing (MPC) ≈ Map Reduce System

3.1 MPC

- M machines

1

𝑋1 𝑋2 𝑋3 𝑋4 …… 𝑋𝑛

1,2) 𝑃1 𝑃2

3) 𝑃1 𝑃2

Reduce
from n
bits to
n/2 bits

Repeat this for log n times

Figure 1:

- Each machine has space O(S)

(Local space, the biggest difference between PRAM and MPC is the space is not shared.)

→ Total space O(mS)

- Computation proceeds in rounds

– Do any local computation

– Shuffle step, which means change information between machines

(Shuffle has constraint that the amount of data in/out for each machine is O(S))

3.2 Performance Measure:

- Number of rounds (≈ Parallel time)

- Total space used (≈ Work)

Related to BSP: Bulk-Synchronous-Parallel (Valiant)

Note: Can simulate ”Shared Memory” by: Each machine be responsible for S addresses

Theorem 2. Can simulate PRAM (at least EREW) where number of rounds R = O(Parallel − time)
(for any S = Ω(1))

Proof. Why easy for EREW: each machine is responsible for S addresses, this means the number of

requests is O(S)
round

Params:

- S = O(1)→ Like PRAM (EREW)

- S can be much larger, total space O(m · S) ≥ N

- Ideally m · S = O(N)

- S = N δ, δ = Small constant

If each machine has a list of all other machines → S ≥ m→ S ≥
√
N , i.e. δ = 1

2

2

Question: When δ = Ω(1) can we do better than PRAM ?

Problem 1: XOR of N bits

Note: At start each machine has S bits of inputs, split arbitrarily

PRAM: O(logN) Parallel time

R = O(1) rounds, when S =
√
N

𝑁 bits

When 𝑆 = 𝑁

Figure 2:

Algorithm:[see Figure 2]

- XOR locally

- Compute answer to C

- C XORs its inputs

R = O(logS N) = O(1δ), When S = N δ, implement that in S-Arrays tree where number of rounds is

the height of tree = O(logS N)

Theorem 3. Can simulate CRCW with number of rounds R = O(Parallel-time · logS N)

Problem 2: Prefix sum

Input: (i, ai), i = 1, 2, · · · , n
Output: (i, σi), σi =

∑i
j=i

We’ll solve in rounds R = O(logS N)

Ml(i) = Ancestor of i at level l, l = 1, 2, · · · , n

Algorithm:[see Figure 3]

3

- Send (i, ai) to machine ML(i)

- For l = L↗ 2 send sum of ”local” numbers to parent

- For l = 1↘ L− 1 send to child c: the sum of children 1, 2, · · · , c− 1 plus σp

where σp is the sum of ais to the left of the node.[see Figure 4.]

- Machine ML(i) computes σi = σp + aj + aj+1 + · · ·+ ai and produces pair (i, ai) [see Figure 5.]

Number of rounds R = O(L) = O(logS N) = O(1
σ)

l=1

l=2

𝑀𝑙(𝑖)

……

l=L-1

l=L

leaf i i+1

n

S

S input pairs

Figure 3:

σ 𝑝

c1

Figure 4:

𝑀𝐿(𝑖)

σ 𝑝

ijσ 𝑝 leaf

Figure 5:

4

Problem 3: Sorting

Input: (i, ai), i = 1, 2, · · · , n
Output: (i, ai, r), i = 1, 2, · · · , n, r = rank of ai in {aj}j=1,2,··· ,n

S = O(n
3
4), δ = 3

4 , m = O(n
1
4), we can also do like S ≥ N δ

Idea: Quick-sort with many pivots → n
1
4

1. For each i ∈ [n] call i a pre-pivot with probability n1/3

n

→ number of pre-pivots is O(n1/3)

2. Send pre-pivots to every machine

3. For every machine and every pre-pivots p, compute ”local rank” → number of elements ≤ p

4. Every machine sends ”local rank” of every pre-pivot to C

5. C computes rank of each pre-pivot

6. C chooses set of n1/4 pre-pivots, called P, with ranks i · n3/4 ±O(n3/4), i = 1, 2, · · · , n1/4

→ For averaging purpose

7. C sends pivots P, together with their ranks to all machines

8. Each machine for each (i, ai) finds j s.t. pj ≤ ai < pj+1 (p0 = −∞, pn1/4+1 = +∞), send ai to

machine j

9. Machine j has all ais s.t. pj ≤ ai < pj+1, sort locally, assign ranks to ai using rank of pj

5

