
COMS 4995-2: Advanced Algorithms (Spring’20) Apr 9, 2020

Lecture 20: MWUApplication, Models for Large-scale Computation

Instructor: Alex Andoni Scribes: Ruoshi Liu, Hongjin Wang

1 Recap: Multiplicative Weights Update

Problem Definition We have n ”experts” and an event which lasts from 1 to T. At each timestamp,

each expert will make a prediction of the event. We define the following terms:

• f ti ∈ [−1,+1]: the error of expert i at time t

• mT
i =

∑T
t=1 f

t
i : number of errors of expert i

• MT =
∑T

t=1 f
t
ei : number of our errors, where ei is the expert we chose to follow at time t

A Randomized Algorithm

1. Keep weights wti > 0, where i is in index for expert, and t is for time

2. Initialize wti = 1

3. At time t, make prediction: i p, pti =
wt

i∑
j w

t
j

and update: wt+1
i = wti(1− εf ti)

Theorem 1. MT ≤ minimT
i + lnn

ε + εT

Corollary 2. If T > lnn
ε2

=⇒ MT ≤ minimT
i + 2εT

Note that the theorem has been proved in last lecture.

2 Application of MWU: feasibility of LP

Problem Definition: feasibility of a standard-form LP: ∃x ∈ R, s.t. Ax ≥ b

Relaxed Version: distinguish between

1. ∃x ∈ Rn, s.t. Ax ≥ b− ε1m

2. ∃!x s.t. Ax ≥ b

To solve the relaxed version of the problem, we assume an access to the following oracle:

1

Definition 3. O is an oracle the given an input of p ∈ Rm, if ∃x ∈ Rm s.t. pTAx ≥ pT b and

maxi|Aix− bi| ≤ 1, then output x; output ’NO’ otherwise

Theorem 4. We can solve the relaxed version of the LP-feasibility problem using O(lnn)
ε2

oracle calls

We give an algorithm solving the feasibility problem using the oracle specified above:

1. Initilize w1
i = 1 , ∀i ∈ {1, ...,m}, where m is the number of experts

2. at iteration t ∈ 1, ...,O(lnn
ε2

)

(a) pti =
wt

i∑
j w

t
j
; pt = [pt1, p

t
2, ..., p

t
m]

(b) xt = O(pt)

(c) if ∃!x =⇒ return Infeasible

(d) wt+1
i = wti(1− εf ti), f ti = Aix− bi

3. return the average: x̄ =
∑T

t=1
xt

T

Intuition of the algorithm: in step 2.(d), if f ti is bigger than 0, or in other words, the constraint i

is well satisfied from expert i perspective, then the weight corresponding to that expert will decrease.

According to step 2.(a), the probability of choosing that specific expert will also decrease. Therefore in

the next iteration, the oracle will focus more on other constraints that are less satisfied.

Proof. First, If the algorithm returns ’inf’ =⇒ the relaxed problem is infeasible.

Here we draw connection to MWU: expert i is the same as constraint Aix ≥ bi
We define f ti as the error at constraint i:

f ti = Aix
t − bi; f t = Axt − b (1)

which satisfies f ti ∈ [−1,+1] by O
By definition,

MT =
T∑
t=1

< pt, f t >

=
T∑
t=1

m∑
i=1

pti · f ti

=
∑
t

< pt, Axt − b >

=
∑
t

< pt, Axt > −
∑
t

< pt, b >

=
∑
t

[(pt)TAxt − (P t)T · b] ≥ 0

2

From corallary 2 , we know that,

M t ≤ mT
i + 2εT, ∀i ∈ [m] (2)

Which implies,

mT
i ≥ −2εT =⇒

T∑
t=1

f ti ≥ −2εT

=⇒
T∑
t=1

[Aix
t − bi] ≥ −2εT

=⇒ Ai ·
T∑
t=1

xt ≥ T · bi − 2εt

=⇒ Ai ·
∑T

t=1 x
t

T
≥ bi − 2ε

Student question: How can we guarantee maxi |Aix− bi| ≤ 1?

Suppose we can solve O:

max
i
|Aix− bi| ≤ k,Ax ≥ b

⇒ max
i
|Ai
k
x− bi

k
| ≤ 1

This can be solve approximately:
A

k
x ≥ b

k
− ε1m

⇒ Ax ≥ b− εk1m

Define ε′ = εk

by above can be solved in T = O(lgn
ε2

) = O(k2 lgn
(ε′)2)

3 Large Scale Model

From now on we design algorithm taking into account the architecture.

3.1 Usual Model(RAM Model)

See Figure 1

3.2 Modern Model

See Figure 2

3.3 I/O Model

See Figure 3

3

Figure 1: Usual Model(RAM Model)

Figure 2: Modern Model

• CPU with O(1) registers(or cell of memory/word)

• cache of size M

• unlimited memory

• cache/memory are composed of cache lines, each of B words

• when accessing a new location x, if it not in cache, we need to bring entire cache line

• cache line: Starts at B · i, i ∈ N , ends at B · (i+ 1)− 1

• when cache is full, throw one cache line out(replace), either ”manually” or Least Recently Used(LRU)

policy

Since accessing cache is cheap, while accessing memory is expensive, we can define cost as number of

times bring a cache line from memory into cache.

4

Figure 3: I/O model

3.4 Problem: searching memory

Searching x in an unsorted array of size N.

• RAM model: O(N)

• I/O model: Assume array stored linearly. O(N/B+1)

Figure 4: Search x in an unsorted array

Proof. The proof is illustrated in Figure 4.

When N ≤ B, it depends on whether the array is divided by the cache line boundary. cost = 2 if

divided, cost = 1 if not.

When N > B, the array straddles ≤ N/B + 2 cache lines ⇒ O(N/B + 1) ”runtime”

5

