Lecture 2: Approximate Counting Continued, Hashing

1 Approximate Counting Continued . . .

Recap from last lecture:

- Problem simply concerns counting up to n
- Morris Algorithm was introduced, which has one register, X, initialized to 0
- We increment as we see ticks, but much more slowly than if we just count
- The bigger X becomes, the less likely it is to increment

1.1 Morris Algorithm

- Initialize $X=0$
- At tick: $X=\left\{\begin{array}{l}X, \text { with probability } 1-2^{-X} \\ X+1 \text { with probability } 2^{-X}\end{array}\right.$
- The estimator: $\hat{n}=2^{X}-1$

PART 1: What we proved last lecture . . .

Claim 1. When we define $X_{n}=X$, the count after n ticks, then $\mathbb{E}[\hat{n}]=\mathbb{E}\left[2^{X_{n}}-1\right]=n$
Proof. (Supplied last lecture: showed expectation of the estimator equal to n using induction on n)

PART 2: We ask, "Did we gain anything?"
In Part 1, the estimator is in the right ballpark, and now we want to prove that the number of bits necessary has improved drastically ($\lg \lg n$, instead of $\lg n$, where \lg is implicitly $\lg _{2}$ from here on).

Claim 2. $\operatorname{Pr}[\lg X \leq c \cdot \lg \lg n] \geq 0.9$ for some $c \geq 1$
Proof. Apply the Markov Bound on \hat{n} :

$$
\operatorname{Pr}[\hat{n}>10 n] \leq \frac{n}{10 n}=0.1
$$

$$
\begin{gathered}
\Longrightarrow \operatorname{Pr}\left[2^{X_{n}}-1 \leq 10 n\right] \geq 0.9 \\
2^{X_{n}}-1 \leq 10 n \Longrightarrow \lg X_{n} \leq \lg \lg (10 n+1) \\
\Longrightarrow \exists c \geq 1 \text { such that } \operatorname{Pr}\left[\lg X_{n} \leq c \cdot \lg \lg n\right] \geq \frac{9}{10}
\end{gathered}
$$

1.2 Intuition behind the algorithm

We are counting up to n ticks, and we can think about n as being represented in binary in the following illustration:

In the above, the index of the most significant bit $i_{\max }$ (whose contribution is $2^{\lfloor\lg n\rfloor} \in[n / 2, n]$) is all you need in order to have a factor 2 approximation of the number n. The number of bits necessary to communicate the number $i_{\max }$ is the \lg of the number of bits needed to represent n, which results in $\lg \lg n$.

If $X=$ the most significant bit (index) of the current n, then X should increase only when n roughly doubles. In other words, the larger of number, the less frequently its max index changes.
X is incremented with $\operatorname{Pr} \approx \frac{1}{n} \approx 2^{-X}$

1.3 Show $\hat{\mathbf{n}} \approx \mathbf{n}$ with good probability

We will use another concentration bound called the Chebyshev Bound, and compute $\operatorname{Var}[\hat{n}]$.

Claim 3. $\operatorname{Var}[\hat{n}] \leq \frac{3}{2} n(n+1)+1$

Proof. $\operatorname{Var}[\hat{n}]=\operatorname{Var}\left[2^{X_{n}}-1\right]=\mathbb{E}\left[\left(2^{X_{n}}-1\right)^{2}\right]-n^{2}=\mathbb{E}\left[2^{2 X_{n}}\right]+\underbrace{1-2 \underbrace{\mathbb{E}\left[2^{X_{n}}\right]}_{n+1}-n^{2}}_{\leq 0} \leq \mathbb{E}\left[2^{2 X_{n}}\right]$
Inductive hypothesis:

$$
\mathbb{E}\left[2^{2 X_{n}}\right] \leq \frac{3}{2} n(n+1)+1
$$

Base case: $n=0: \mathbb{E}\left[2^{0}\right]=1 \leq 1$
Assume the inductive hypothesis for $\mathbb{E}\left[2^{2 X_{n-1}}\right]$
Now we want to compute the expectation:

$$
\begin{gathered}
\mathbb{E}\left[2^{2 X_{n}}\right]=\mathbb{E}_{X_{n-1}}\left[\mathbb{E}_{X_{n}}\left[2^{2 X_{n}}\right]\right] \\
=\sum_{i \geq 0} \operatorname{Pr}\left[X_{n-1}=i\right] \cdot \mathbb{E}_{X_{n}}\left[2^{2 X_{n}} \mid X_{n-1}=i\right] \\
=\sum_{i \geq 0} \operatorname{Pr}\left[X_{n-1}=i\right] \cdot\left[2^{-i} \cdot 2^{2(i+1)}+\left(1-2^{-i}\right) \cdot 2^{2 i}\right] \\
=\sum_{i \geq 0} \operatorname{Pr}\left[X_{n-1}=i\right]\left[A^{3} \cdot 2^{i}+2^{2 i}-2^{\prime}\right] \\
=\sum_{i \geq 0} \operatorname{Pr}\left[X_{n-1}=i\right] \cdot 2^{i} \cdot 3+\sum_{i \geq 0} \operatorname{Pr}\left[X_{n-1}=i\right] \cdot 2^{2 i} \\
=3 \cdot \underbrace{\mathbb{E}\left[2^{X_{n-1}}\right]}_{n, \text { by Claim } 1}+\underbrace{\mathbb{E}\left[2^{2 X_{n-1}}\right]}_{\leq \frac{3}{2} n(n-1)+1} \\
\leq \frac{3}{2} n(n+1)+1
\end{gathered}
$$

1.4 Chebyshev

By definition of Chebyshev:

$$
\operatorname{Pr}[|\hat{n}-\mathbb{E}(\hat{n})|>\lambda] \leq \frac{\operatorname{Var}[\hat{n}]}{\lambda^{2}} \leq \frac{\frac{3}{2} n(n+1)+1}{\lambda^{2}}<0.1
$$

It is good enough to have $\lambda=5 n$, since this is an analysis and Chebyshev holds for any bound.
The algorithm does not give a good accuracy, but there is a standard trick to boost the accuracy to get a much better estimate. In particular, we want to do the following:

GOAL: Estimate n up to $\pm \epsilon n$ for small $\epsilon>0$.

- Think of epsilon as being 0.1 which is comparable to 10% error.
- "Estimate up to" means $(1-\epsilon) n \leq \hat{n} \leq(1+\epsilon) n$
- To reach our goal, we will essentially do a bunch of counters and average them (Morris+ Algorithm)

1.5 Morris+ Algorithm

- Use $k=$ TBD counters $X^{1}, X^{2}, \ldots, X^{k}$.
- Each X^{i} uses Morris Algorithm and is i.i.d.
- The new estimate will be $\hat{n}=\frac{1}{k} \sum_{i=1}^{k} \hat{n}^{i}$, where $\hat{n}^{i}=2^{X^{i}}-1$

1.6 Amplification / Variance Reduction via Repetition

We will do the analysis and see what we need to set k to be such that we get the above goal.
Claim 4. $\mathbb{E}[\hat{n}]=\mathbb{E}\left[\frac{1}{k} \sum_{i=1}^{k} \hat{n}^{i}\right]=n$, by linearity of expectation.
Claim 5. $\operatorname{Var}[\hat{n}]=\frac{\operatorname{Var}\left[\hat{n}^{1}\right]}{k}$

Proof.

$$
\operatorname{Var}[\hat{n}]=\operatorname{Var}\left[\frac{1}{k} \cdot \sum_{i=1}^{k} \hat{n}^{i}\right]=\frac{1}{k^{2}} \cdot \operatorname{Var}\left[\sum_{i=1}^{k} \hat{n}^{i}\right]=\underbrace{\frac{1}{k^{2}} \sum_{i=1}^{k} \operatorname{Var}\left[\hat{n}^{i}\right]}_{\text {Due to linearity of variance }}
$$

Note that the variance of the sum of variables are independent of each other, because they each correspond to the estimate of a different run of the algorithm, where each run of the algorithm uses i.i.d. randomness. For this reason, we can use linearity of variance.

Proof of linearity of variance:

For two independent variables X and Y, their covariance is zero: $\operatorname{Cov}(X, Y)=0$

$$
\begin{aligned}
\operatorname{Var} X+Y & =\mathbb{E}\left[((X+Y)-\mathbb{E}[X+Y])^{2}\right] \\
& =\mathbb{E}\left[((X-\mathbb{E}[X])+(Y-\mathbb{E}[Y]))^{2}\right] \\
& =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]+\mathbb{E}\left[(Y-\mathbb{E}[Y])^{2}\right]-2 \mathbb{E}[X-\mathbb{E}[X]] \mathbb{E}[Y-\mathbb{E}[Y]] \\
& =\operatorname{Var} X+\operatorname{Var} Y-2 \underbrace{\operatorname{Cov}(X, Y)}_{=0}
\end{aligned}
$$

$$
\therefore \operatorname{Var} X+Y=\operatorname{Var} X+\operatorname{Var} Y
$$

Set $\lambda=\epsilon n$

By the Chebyshev bound:

$$
\begin{aligned}
\operatorname{Pr}[|\hat{n}-\mathbb{E}[n]|>\lambda] & \leq \frac{\operatorname{Var}[\hat{n}]}{\lambda^{2}} \\
& \leq \underbrace{\frac{\frac{1}{k} \cdot\left(\frac{3}{2} n(n+1)+1\right)}{\epsilon^{2} n^{2}}}_{\text {We want this quantity to be }<0.1}
\end{aligned}
$$

$$
\Longrightarrow \frac{1}{k} \cdot\left(\frac{3}{2} n(n+1)+1\right)<0.1 \cdot \epsilon^{2} n^{2}
$$

\Longrightarrow It is enough to have $k>\Omega\left(\frac{1}{\epsilon^{2}}\right), \quad$ where Ω is some large constant

With k as the above, all is satisfied and our goal is now satisfied.
New space: $\quad \mathrm{O}\left(\frac{1}{\epsilon^{2}} \cdot \lg \lg n\right)$

2 Hashing

Hash function: $h: U \rightarrow[n] \quad$ (where U is the discrete universe)
The main application we will be looking at is Dictionary.

Dictionary: fixed U; preprocess $S \subset U,|S|=m$, s.t. given a query $x \in U$, report if $x \in S$.
Possible solutions for this problem:

Sol 0 . Store S
(Search time: $O(\mathrm{~m})$; Space: $\mathrm{O}(m \cdot \lg m)$)
Sol 0'. Binary Search Tree (Search time: O $(\lg m)$; Space: $\mathrm{O}(m \cdot \lg m)$)
Sol 0" ${ }^{\prime \prime}$. Bit Array (Search time: O(1); Space: $|U|$)

GOAL: Ideally, we would like to combine the best of both worlds and get a deterministic algorithm with both a constant runtime and a space that is linear in the size of S. We will use a hash function to get as close as possible to this goal.

2.1 Solution via a Hash Function

This solution can be thought of a variant of Solution $0^{\prime \prime}$. . . Our universe is very large, and this is why our space is very large, so how about we reduce the universe size?

Solution: Store an array of size n s.t. cell i stores all items $j \in S$ s.t. $h(j)=i$.
When this hash function is defined, it could be that a few elements from the set S map into the same cell.

In the above illustration, element x^{1} and x^{7} are mapped into the same cell (called a collision).

Possible ways we could store x^{1} and x^{7} :

1. Hashing with chaining: store them as a linked list.
2. Linear probing: instead of storing x^{7} where it was mapped, store it in the next empty cell
3. Cuckoo hashing

The main principle is that collisions are bad!

