COMS 4995-2: Advanced Algorithms (Spring'20)

March 3, 2020

Lecture 13: Linear Programming, Duality

Instructor: Alex Andoni

Scribes: Jiaqi Liu, Jianan Yao

1 System of Linear Equations

Given a matrix $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, we are trying to find a solution $x \in \mathbb{R}^n$ such that

Ax = b

We first consider the case where n = m and $det(A) \neq 0$. If n = m and $det(A) \neq 0$, we have already known that

$$x_i = \frac{\det(\text{matrix composed entries of } A, b)}{\det(A)}$$

via Gaussian Elimination.

Note: More precisely, considering Cramer's Rule,

$$x_i = \frac{\det(A_i)}{\det(A)}, i = 1, ..., n$$

where A_i is the matrix formed by replacing the i-th column of A by the column vector b.

Claim 1. Given $n \times n$ square matrix A and vector b of length n, where each element of A and b is an integer with $\leq b$ bits, the solution x to Ax = b is describable with polynomial number of bits.

Proof. Recall how the determinant of A is calculated. det(A) has the form

$$det(A) = \sum_{\tau \in S_n} sgn(\tau) \cdot [\text{product of } n \text{ elements of } A]$$

Each element of A is at most 2^b , so the product of n such elements is at most 2^{nb} , and the summation over n! such products is at most $n! \cdot 2^{bn}$. (When using Leibniz formula or Laplace's formula to compute the determinant of a $x \times n$ matrix, the number of required operations is of order O(n!).) So

 $\{\# \text{ of bits to represent } det(A)\} \le \log(det(A)) \le O(n \log n + bn)$

So solution x is describable with $O(n \log n + bn)$ bits.

Now we consider a more general case when $n \neq m$ or det(A) = 0. We define col(A) as the set of columns of A and span(col(A)) as the vector space spanned by col(A), that is,

$$span(col(A)) = \{x | x \in \mathbb{R}^m, \exists \alpha_1, ..., \alpha_n, x = \sum_{i=1}^n \alpha_i A_i\}$$

where A_i is the *i*-th column of A.

Then we select a maximal set of columns of A that are linear independent, denoted by S. Any other column in A should be in span(S). We view Ax = b as

$$\begin{bmatrix} A_1 \ A_2 \ \dots \ A_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = b$$

Then Ax is just a linear combination of the columns of A, so

$$Ax = b$$
 has solution(s) $\iff b \in span(col(A)) \iff b \in span(S)$

Let \overline{S} = completion of S to a basis in \mathbb{R}^m (we know $|S| \leq m$), then we solve the equations

$$\begin{bmatrix} S_1 \ S_2 \ \dots \ S_{|S|} \ S_{|S|+1} \ \dots \ S_m \end{bmatrix} \begin{bmatrix} x' \\ y \end{bmatrix} = b$$

where $x' \in R^{|S|}, y \in R^{m-|S|}$.

The set of the first |S| columns $\{S_1, S_2, ..., S_{|S|}\}$ is equivalent to S, or in other words, they are columns of A. The remaining m - |S| columns $S_{|S|+1}, ..., S_m$ are from \overline{S} and added to make the basis of \mathbb{R}^m . If Ax = b has solution(s), then we expect to see y = 0 because b is in span(S).

2 Proof of No Solution

What if the system of linear equations has no solution? It is easy to show the system has a solution by providing a witness. Similarly, we want to find a "nice" witness to no solution. The following claim tells us that proving no solution is equivalent to solving another linear system of equations, which gives a sense of duality.

Claim 2. Ax = b has no solution $\iff \exists y \in \mathbb{R}^m$, s.t. $y^T A = 0$ and $y^T b \neq 0$.

Proof. We first prove \Leftarrow part by contradiction. Suppose there exists some y such that $y^T A = 0$ and $y^T b \neq 0$ and Ax = b has a solution. Then for any x,

$$Ax = b \implies y^T Ax = y^T b$$

but we also have

$$y^T A x = (y^T A) x = 0 x = 0$$
$$y^T b \neq 0$$

that is a contradiction to Ax = b.

Then we prove \implies part. Since Ax = b has no solution, we know $b \notin span(col(A))$. Let $proj_A b$ be the projection of vector b on space span(col(A)). We construct $y = b - proj_A b$. Then we have $y \perp span(col(A))$, so $y^T A = 0$.

On the other hand, $y^T b = y^T (y + proj_A b) = ||y||^2 \neq 0$ (which can be rescaled so $||y||^2 = 1$), so we find a valid y.

Such a y can be found by solving the following system of equations.

$$\begin{bmatrix} A^T \\ b^T \end{bmatrix} y = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \in R^{n+1}$$

3 Basics on Linear Programming

Standard formulation of linear programming:

$$\min c^T x \quad s.t. \quad Ax = b \text{ and } x \ge 0$$

Definition 3. An inequality is tight iff it takes "=".

Definition 4. The feasible set $F = \{x | Ax = b, x \ge 0\}$

Definition 5. $x \in F$ is a basic feasible solution iff it is not a convex combination of points in F. More formally, a point p is a basic feasible solution iff

$$\exists y^1, ..., y^{n+1} \in F, \alpha_1, ..., \alpha_{n+1} \in R, \ s.t. \ p = \sum_{i=1}^{n+1} \alpha_i y^i \ and \ \sum_{i=1}^{n+1} \alpha_i = 1 \ and \ y^i \neq p, \forall i \in [n+1]$$

An example is shown in Figure 1.

Figure 1: p is a convex combination of a,b, and d. q is a convex combination of c and d. e is not a combination of any other points, so it can be a basic feasible solution (if it is indeed a solution).

Claim 6. A basic feasible solution is a vertex of polytope F.

Claim 7. If the Linear Programming problem is feasible and bounded (i.e., not infinity), then there exists an optimal solution which is a basic feasible solution.

Proof. Take x^* that is an optimal solution to LP. If x^* is not a basic feasible solution, then x^* is not a vertex. In particular, we know that the number of linearly independent equations and tight inequalities is at most n - 1. Let C be the subspace spanned by these linearly independent equations and tight inequalities. There is at least 1 dimension of freedom.

$$\implies \exists \bar{d} \neq 0, \forall \alpha, x^* + \alpha \bar{d} \in C$$

Further suppose $\exists \epsilon \in R - \{0\}, x = x^* + \epsilon \overline{d} \in F$. We rewrite our optimization objective

$$c^T x = c^T (x^* + \epsilon \bar{d}) = c^T x^* + \epsilon c^T \bar{d}$$

Since x^* is the optimal solution, $c^T d$ must be zero. So the $c^T x$ remains unchanged if we change x on the direction of \overline{d} . We can push x such that one more inequality in $x \ge 0$ becomes tight. This procedure is repeated until we reach an optimal solution x^* , where there are n linearly independent equations and tight inequalities.

4 Linear Programming Algorithms

We introduce our first algorithm for Linear Programming. Each time we consider n linear independent equations and tight inequalities. Then we solve for x and compute $c^T x$. Finally, we choose x that is feasible and minimizes $c^T x$.

Time complexity = # of choices of linearly independent equations/tight inequalities

$$= \binom{n+m}{n} \times poly(n)$$

where n and m are the number of equality and inequality constraints. This is not a polynomial time algorithm. To Be Continued.