1 System of Linear Equations

Given a matrix $A \in R^{m \times n}, b \in R^{m}$, we are trying to find a solution $x \in R^{n}$ such that

$$
A x=b
$$

We first consider the case where $n=m$ and $\operatorname{det}(A) \neq 0$. If $n=m$ and $\operatorname{det}(A) \neq 0$, we have already known that

$$
x_{i}=\frac{\operatorname{det}(\text { matrix composed entries of } A, b)}{\operatorname{det}(A)}
$$

via Gaussian Elimination.
Note: More precisely, considering Cramer's Rule,

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}, i=1, \ldots, n
$$

where A_{i} is the matrix formed by replacing the i-th column of A by the column vector b.
Claim 1. Given $n \times n$ square matrix A and vector b of length n, where each element of A and b is an integer with $\leq b$ bits, the solution x to $A x=b$ is describable with polynomial number of bits.
Proof. Recall how the determinant of A is calculated. $\operatorname{det}(A)$ has the form

$$
\operatorname{det}(A)=\sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) \cdot[\text { product of } n \text { elements of } A]
$$

Each element of A is at most 2^{b}, so the product of n such elements is at most $2^{n b}$, and the summation over $n!$ such products is at most $n!\cdot 2^{b n}$. (When using Leibniz formula or Laplace's formula to compute the determinant of a $x \times n$ matrix, the number of required operations is of order $O(n!)$.) So

$$
\{\# \text { of bits to represent } \operatorname{det}(A)\} \leq \log (\operatorname{det}(A)) \leq O(n \log n+b n)
$$

So solution x is describable with $O(n \log n+b n)$ bits.

Now we consider a more general case when $n \neq m$ or $\operatorname{det}(A)=0$. We define $\operatorname{col}(A)$ as the set of columns of A and $\operatorname{span}(\operatorname{col}(A))$ as the vector space spanned by $\operatorname{col}(A)$, that is,

$$
\operatorname{span}(\operatorname{col}(A))=\left\{x \mid x \in R^{m}, \exists \alpha_{1}, \ldots, \alpha_{n}, x=\sum_{i=1}^{n} \alpha_{i} A_{i}\right\}
$$

where A_{i} is the i-th column of A.
Then we select a maximal set of columns of A that are linear independent, denoted by S. Any other column in A should be in $\operatorname{span}(\mathrm{S})$. We view $A x=b$ as

$$
\left[\begin{array}{llll}
A_{1} & A_{2} & \ldots & A_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=b
$$

Then $A x$ is just a linear combination of the columns of A, so

$$
A x=b \text { has solution }(\mathrm{s}) \Longleftrightarrow b \in \operatorname{span}(\operatorname{col}(A)) \Longleftrightarrow b \in \operatorname{span}(S)
$$

Let $\bar{S}=$ completion of S to a basis in R^{m} (we know $|S| \leq m$), then we solve the equations

$$
\left[\begin{array}{llllll}
S_{1} & S_{2} & \ldots & S_{|S|} & S_{|S|+1} & \ldots
\end{array} S_{m}\left[\begin{array}{c}
x^{\prime} \\
y
\end{array}\right]=b\right.
$$

where $x^{\prime} \in R^{|S|}, y \in R^{m-|S|}$.
The set of the first $|S|$ columns $\left\{S_{1}, S_{2}, \ldots, S_{|S|}\right\}$ is equivalent to S, or in other words, they are columns of A. The remaining $m-|S|$ columns $S_{|S|+1}, \ldots, S_{m}$ are from \bar{S} and added to make the basis of R^{m}. If $A x=b$ has solution(s), then we expect to see $y=0$ because b is in $\operatorname{span}(S)$.

2 Proof of No Solution

What if the system of linear equations has no solution? It is easy to show the system has a solution by providing a witness. Similarly, we want to find a "nice" witness to no solution. The following claim tells us that proving no solution is equivalent to solving another linear system of equations, which gives a sense of duality.

Claim 2. $A x=b$ has no solution $\Longleftrightarrow \exists y \in R^{m}$, s.t. $y^{T} A=0$ and $y^{T} b \neq 0$.
Proof. We first prove \Longleftarrow part by contradiction.
Suppose there exists some y such that $y^{T} A=0$ and $y^{T} b \neq 0$ and $A x=b$ has a solution. Then for any x,

$$
A x=b \Longrightarrow y^{T} A x=y^{T} b
$$

but we also have

$$
\begin{aligned}
& y^{T} A x=\left(y^{T} A\right) x=0 x=0 \\
& y^{T} b \neq 0
\end{aligned}
$$

that is a contradiction to $A x=b$.
Then we prove \Longrightarrow part. Since $A x=b$ has no solution, we know $b \notin \operatorname{span}(\operatorname{col}(A))$. Let $\operatorname{proj}_{A} b$ be the projection of vector b on space $\operatorname{span}(\operatorname{col}(A))$. We construct $y=b-\operatorname{proj}_{A} b$. Then we have $y \perp \operatorname{span}(\operatorname{col}(A))$, so $y^{T} A=0$.

On the other hand, $y^{T} b=y^{T}\left(y+\operatorname{proj}_{A} b\right)=\|y\|^{2} \neq 0$ (which can be rescaled so $\|y\|^{2}=1$), so we find a valid y.

Such a y can be found by solving the following system of equations.

$$
\left[\begin{array}{c}
A^{T} \\
b^{T}
\end{array}\right] y=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] \in R^{n+1}
$$

3 Basics on Linear Programming

Standard formulation of linear programming:

$$
\min c^{T} x \text { s.t. } A x=b \text { and } x \geq 0
$$

Definition 3. An inequality is tight iff it takes " $=$ ".
Definition 4. The feasible set $F=\{x \mid A x=b, x \geq 0\}$
Definition 5. $x \in F$ is a basic feasible solution iff it is not a convex combination of points in F. More formally, a point p is a basic feasible solution iff

$$
\exists y^{1}, \ldots, y^{n+1} \in F, \alpha_{1}, \ldots, \alpha_{n+1} \in R \text {, s.t. } p=\sum_{i=1}^{n+1} \alpha_{i} y^{i} \text { and } \sum_{i=1}^{n+1} \alpha_{i}=1 \text { and } y^{i} \neq p, \forall i \in[n+1]
$$

An example is shown in Figure 1.

Figure 1: p is a convex combination of a, b, and $d . q$ is a convex combination of c and $d . e$ is not a combination of any other points, so it can be a basic feasible solution (if it is indeed a solution).

Claim 6. A basic feasible solution is a vertex of polytope F.
Claim 7. If the Linear Programming problem is feasible and bounded (i.e., not infinity), then there exists an optimal solution which is a basic feasible solution.

Proof. Take x^{*} that is an optimal solution to LP. If x^{*} is not a basic feasible solution, then x^{*} is not a vertex. In particular, we know that the number of linearly independent equations and tight inequalities is at most $n-1$. Let C be the subspace spanned by these linearly independent equations and tight inequalities. There is at least 1 dimension of freedom.

$$
\Longrightarrow \exists \bar{d} \neq 0, \forall \alpha, x^{*}+\alpha \bar{d} \in C
$$

Further suppose $\exists \epsilon \in R-\{0\}, x=x^{*}+\epsilon \bar{d} \in F$. We rewrite our optimization objective

$$
c^{T} x=c^{T}\left(x^{*}+\epsilon \bar{d}\right)=c^{T} x^{*}+\epsilon c^{T} \bar{d}
$$

Since x^{*} is the optimal solution, $c^{T} d$ must be zero. So the $c^{T} x$ remains unchanged if we change x on the direction of \bar{d}. We can push x such that one more inequality in $x>=0$ becomes tight. This procedure is repeated until we reach an optimal solution x^{*}, where there are n linearly independent equations and tight inequalities.

4 Linear Programming Algorithms

We introduce our first algorithm for Linear Programming. Each time we consider n linear independent equations and tight inequalities. Then we solve for x and compute $c^{T} x$. Finally, we choose x that is feasible and minimizes $c^{T} x$.
Time complexity $=\#$ of choices of linearly independent equations/tight inequalities

$$
=\binom{n+m}{n} \times \operatorname{poly}(n)
$$

where n and m are the number of equality and inequality constraints. This is not a polynomial time algorithm. To Be Continued.

