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1 System of Linear Equations

Given a matrix A ∈ Rm×n, b ∈ Rm, we are trying to find a solution x ∈ Rn such that

Ax = b

We first consider the case where n = m and det(A) 6= 0. If n = m and det(A) 6= 0, we have already

known that

xi =
det(matrix composed entries of A, b)

det(A)

via Gaussian Elimination.

Note: More precisely, considering Cramer’s Rule,

xi =
det(Ai)

det(A)
, i = 1, ..., n

where Ai is the matrix formed by replacing the i-th column of A by the column vector b.

Claim 1. Given n × n square matrix A and vector b of length n, where each element of A and b is an

integer with ≤ b bits, the solution x to Ax = b is describable with polynomial number of bits.

Proof. Recall how the determinant of A is calculated. det(A) has the form

det(A) =
∑
τ∈Sn

sgn(τ) · [product of n elements of A]

Each element of A is at most 2b, so the product of n such elements is at most 2nb, and the summation

over n! such products is at most n! · 2bn. (When using Leibniz formula or Laplace’s formula to compute

the determinant of a x× n matrix, the number of required operations is of order O(n!).) So

{# of bits to represent det(A)} ≤ log(det(A)) ≤ O(n log n+ bn)

So solution x is describable with O(n log n+ bn) bits.

Now we consider a more general case when n 6= m or det(A) = 0. We define col(A) as the set of columns

of A and span(col(A)) as the vector space spanned by col(A), that is,

span(col(A)) = {x|x ∈ Rm,∃α1, ..., αn, x =

n∑
i=1

αiAi}
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where Ai is the i-th column of A.

Then we select a maximal set of columns of A that are linear independent, denoted by S. Any other

column in A should be in span(S). We view Ax = b as

[A1 A2 ... An]


x1
x2
...

xn

 = b

Then Ax is just a linear combination of the columns of A, so

Ax = b has solution(s) ⇐⇒ b ∈ span(col(A)) ⇐⇒ b ∈ span(S)

Let S̄ = completion of S to a basis in Rm (we know |S| ≤ m), then we solve the equations

[S1 S2 ... S|S| S|S|+1 ... Sm]

[
x′

y

]
= b

where x′ ∈ R|S|, y ∈ Rm−|S|.
The set of the first |S| columns {S1, S2, ..., S|S|} is equivalent to S, or in other words, they are columns

of A. The remaining m− |S| columns S|S|+1, ..., Sm are from S̄ and added to make the basis of Rm.

If Ax = b has solution(s), then we expect to see y = 0 because b is in span(S).

2 Proof of No Solution

What if the system of linear equations has no solution? It is easy to show the system has a solution

by providing a witness. Similarly, we want to find a ”nice” witness to no solution. The following claim

tells us that proving no solution is equivalent to solving another linear system of equations, which gives

a sense of duality.

Claim 2. Ax = b has no solution ⇐⇒ ∃y ∈ Rm, s.t. yTA = 0 and yT b 6= 0.

Proof. We first prove ⇐= part by contradiction.

Suppose there exists some y such that yTA = 0 and yT b 6= 0 and Ax = b has a solution. Then for any x,

Ax = b =⇒ yTAx = yT b

but we also have

yTAx = (yTA)x = 0x = 0

yT b 6= 0

that is a contradiction to Ax = b.

Then we prove =⇒ part. Since Ax = b has no solution, we know b /∈ span(col(A)). Let projAb

be the projection of vector b on space span(col(A)). We construct y = b − projAb. Then we have

y ⊥ span(col(A)), so yTA = 0.
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On the other hand, yT b = yT (y + projAb) = ||y||2 6= 0 (which can be rescaled so ||y||2 = 1), so we find a

valid y.

Such a y can be found by solving the following system of equations.

[
AT

bT

]
y =


0
...

0

1

 ∈ Rn+1

3 Basics on Linear Programming

Standard formulation of linear programming:

min cTx s.t. Ax = b and x ≥ 0

Definition 3. An inequality is tight iff it takes “ =”.

Definition 4. The feasible set F = {x|Ax = b, x ≥ 0}

Definition 5. x ∈ F is a basic feasible solution iff it is not a convex combination of points in F . More

formally, a point p is a basic feasible solution iff

∃y1, ..., yn+1 ∈ F, α1, ..., αn+1 ∈ R, s.t. p =

n+1∑
i=1

αiy
i and

n+1∑
i=1

αi = 1 and yi 6= p,∀i ∈ [n+ 1]

An example is shown in Figure 1.

Figure 1: p is a convex combination of a,b, and d. q is a convex combination of c and d. e is not a
combination of any other points, so it can be a basic feasible solution (if it is indeed a solution).

Claim 6. A basic feasible solution is a vertex of polytope F .

Claim 7. If the Linear Programming problem is feasible and bounded (i.e., not infinity), then there exists

an optimal solution which is a basic feasible solution.
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Proof. Take x∗ that is an optimal solution to LP. If x∗ is not a basic feasible solution, then x∗ is not a

vertex. In particular, we know that the number of linearly independent equations and tight inequalities

is at most n − 1. Let C be the subspace spanned by these linearly independent equations and tight

inequalities. There is at least 1 dimension of freedom.

=⇒ ∃d̄ 6= 0, ∀α, x∗ + αd̄ ∈ C

Further suppose ∃ε ∈ R− {0}, x = x∗ + εd̄ ∈ F . We rewrite our optimization objective

cTx = cT (x∗ + εd̄) = cTx∗ + εcT d̄

Since x∗ is the optimal solution, cTd must be zero. So the cTx remains unchanged if we change x on the

direction of d̄. We can push x such that one more inequality in x >= 0 becomes tight. This procedure

is repeated until we reach an optimal solution x∗, where there are n linearly independent equations and

tight inequalities.

4 Linear Programming Algorithms

We introduce our first algorithm for Linear Programming. Each time we consider n linear independent

equations and tight inequalities. Then we solve for x and compute cTx. Finally, we choose x that is

feasible and minimizes cTx.

Time complexity = # of choices of linearly independent equations/tight inequalities

=

(
n+m

n

)
× poly(n)

where n and m are the number of equality and inequality constraints. This is not a polynomial time

algorithm. To Be Continued.
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