
COMS 4995-2: Advanced Algorithms (Spring’20) Feb 27, 2020

Lecture 12: Optimization / Linear Programming

Instructor: Alex Andoni Scribes: John Daciuk and Sagar Lal

1 Introduction

General LP Objective: minf(x); x ∈ F ⊂ R where F is the set of feasible solutions.

There are many types of problems that are included in linear programming. When a problem can be put

in terms of an objective function and competing constraints, it might be solved with LP. Although we

can’t solve sorting with LP, if you go to a desert island and can only take one algorithm with you, take

an LP solver1. Here is an example LP problem:

Example 1: Min-conductance of G

φ(G) = mins/∈∅,vol(s)≤ 1
2
vol(v)

|∂S|
vol(s) where vol(s) =

∑
i∈s d

This problem can be translated to the following problem:

Obj: unknowns is x ∈ Rn ⇒ indicators 1s⇒

{
1, if i ∈ s
0, if i /∈ s

min xTLx∑
i∈[a] xi·di Note L is the laplacian, minimize such that the following conditions hold:

1. x ∈ 0, 1⇔ xi(1− xi) = 0

2.
∑
xi ≥ 1

3.
∑
xi · di ≤ 1

2

∑
di

In effect the numerator in the minimization represents the boundary of S and the denominator represents

the volume of S if the constraints hold. As we saw in last class, solving the former problem is NP-hard,

so the LP version will be as well. Some intuition why this is the case is that conditions 2 and 3 are linear

inequalities, but condition 1 has a polynomial of degree 2, which in general makes the problem quite

difficult.

1Joke from lecture

1

1.1 Linear Programming General Form

Linear programming is a subset of optimization problems that have the following form:

minf(x) =
∑n

i=1 cixi s.t Ax ≥ b where A is a m x m matrix and b ∈ Rn.

This effectively is a summarization of a series of linear inequalities of the form: a1,1x1+a1,2x2, , a1,nxn ≥ b1.

Remarks:

1. maxf(x) = −min[−f(x)]

2. A1x ≥ b⇔ (−A1)x ≤ −b1

3. A1x = b1 ⇔ A1x ≤ b1 & A1x ≥ b1

So we can already see how the same problem can be written in different ways. The general goal of the

chapter is to be able to solve equations of this form via an algorithm that works in polynomial time.

Example 2: Max flow in G

Problem: Given G, capacity k; s,t ∈ v, find f ∈ Rn that max|f | s.t. f represents s→ t flow.

LP Formulation:

max
∑

(s,u)∈E fs,u −
∑

(u,s)∈E fu,s = |f | s.t.

1. f obeys capacity constraints: 0 ≤ fu,v ≤ ku,v∀(u, v) ∈ E

2. f obeys flow conservation: ∀u /∈ s, t:
∑

(v,u)∈E fv,u −
∑

(u,v)∈E fu,v = 0

Although we can put a max flow problem into an LP solver, that doesn’t mean that we’ll get as good of

a runtime as some of the other algorithms we discussed.

2 Standard Form of LP

One of the purposes of today’s lecture is to understand the structure of the problem we’re trying to solve.

Once we sufficiently understand the structure, then we can design algorithms in later lectures to exploit

it. Although not really mathematically distinct, we have another way of expressing an LP problem that

can be more convenient. It’s nothing more than a rewriting of what we saw earlier, but this will later

become useful. This transformation is analogous to what we did going from the adjacency matrix to the

Laplacian, which had some nice properties.

Definition 1. Minimize cTx where c ∈ Rn, such that Ax = b and x ≥ 0.

At first glance this may appear easier than what we saw earlier. We’re just looking at solutions to a

system of linear equations where x is positive. However, it turns out that the two problems are equivalent.

2

Reduction from general form to standard form:

We have two things to address. First we are now allowing only positive variables, and second, now Ax = b

is an equality. The reduction proceeds in two steps.

1. To accomodate the desire for all non-negative variables, for all variables xi ∈ R in the general form,

we create two new variables x+i and x−i with the definition xi , x+i − x
−
i and x+i , x

−
i ≥ 0. Since

any real number can be written as the difference of two other positive real numbers, this is a safe

step to take.

2. Plugging this into the general form would imply Aix ≥ b⇒ Ai(x
+
i −x

−
i) ≥ b, which we want now to

be an equality. If we need Ai(x
+
i −x

−
i) ≥ b this is equivalent to saying we need Ai(x

+
i −x

−
i)−ξi = b

for some non-negative ξi. This motivates the introduction of slack variables ξi , Ai(x
+
i − x

−
i) − b

where we constrain ξi ≥ 0.

The slack variables tell us how far off we are from the previous inequalities in general form. If ξi = 0,

we call the ith constraint tight. We have introduced a bunch of equations which will be captured in the

new Ax = b 2. Note that our x, A and b in Ax = b will not be the same as were for the general form,

otherwise we could easily see that the mathematical equivalence breaks down. Rather these objects will

grow in dimension. In particular x will now contain x+i , x−i , and ξi. The c in the objective function may

also grow, and in general the objective function will not look the same. However, the key point is that we

will guarantee that an optimal solution to the new linear program will yield an optimal solution to the

original. More specifically, for each feasible solution x in the general form with objective value v, there

is a corresponding feasible solution x′ in standard form with the same objective value v and vice versa.

3 Structure of Feasible Solutions for LP

Definition 2. x is a feasible solution if it satisfies the constraints (Ax ≥ b for general form). F , set

of feasible x.

We proceed to get some intuition for what F looks like, meanwhile ignoring the objective for now. First,

recall we need to satisfy Aix ≥ bi, ∀i. To break this down we can think about A1 · x ≥ b1 where A1 is

a vector of the first row of A and b1 is just a real number. For 2 dimensional x the solutions lie on one

side of a line which A1 is perpendicular to, for 3 dimensions the solutions are confined to one side of a

plane, and in general the solutions will be a half-space on one side of a hyperplane with A1 normal to the

plane. To see why A1 is normal, consider the simplified A1x ≥ 0. We’ve defined a hyperplane through

the origin and if x sits on the hyperplane, we should get 0, thus A1 would need to be perpendicular to x

and the hyperplane.

Because we must satisfy not just A1x ≥ b1 but all Aix ≥ bi, F will have to sit inside all of these half-spaces

or a polytope.

Definition 3. F is bounded if contained in a finite polytope and unbounded otherwise.

2Except for the non-negativity constraint on the variables which may be implicitly taken care of.

3

3.1 Example of F in two dimensions

x1

x2

-1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4

x1 ≤ 2

x1 + x2 ≥ 1

x1 − x2 ≥ −1

x2 ≥ 0

4 How to Find an Optimum Solution

4.1 Possibilities

Recall we need to minimize cTx such that x ∈ F . There are 3 possibilities for what can happen:

1. If F is ∅, then there are no solutions, never mind optimal solutions. Constraints contradict.

2. When F is unbounded, there may be no finite minimum. For example minimize x1 subject to

x1 ≤ 1. However, if we had to minimize x1 subject to x1 ≥ 1, then F is still unbounded, but there

is a finite solution.

3. There is an optimal solution x and we say v∗ = cTx.

4.2 *Algorithm

This is really more of a mathematical procedure than an algorithm. We can take a v ∈ R which is a

guess that hopefully doesn’t over estimate the optimal value v∗. Now we have cTx = v, which by virtue

of fixing v constrains x to lie somewhere in a hyperplane we’ll call Hv. Now, if v < v∗, Hv 6∩ F , otherwise

v∗ would not be the optimum. So then we may progress by guessing v + ε, effectively moving Hv up a

little bit. After some iterations, we will see Hv ∩ F , which would put v within ε of v∗, and we are done.

4

4.3 Remarks

To think a bit more about this geometrically, c is normal to Hv and governs its orientation. In the two

dimensional figure above Hv would be a line with slope perpendicular to c; as the line moves up in the

x1 x2 plane it will eventually intersect the yellow region F . c drives x in some particular direction for

which F only permits us to go so far.

In general the intersection with F will occur at a vertex of the polytope, which will become useful because

this vertex is the solution to some system of equations. This motivates our interest in solving systems of

equations, which we now turn to.

5 Solving Systems of Equations

We’re interested in solving Ax = b where A is an m by n matrix. The core algorithm we have for doing

this is Gaussian Elimination.

5.1 Example

3x1 + 7x2 + 2x3 ... + 4xn = 9 (1)

2x1 + 4x2 + 6x3 ... + 2xn = 1 (2)

... (more equations)

x1 + 8x2 + 3x3 ... + 5xn = 0 (n)

Here we could solve the first equation for x1, and then plug into the second equation to eliminate x1 from

it. Then we could solve the second equation for x2 and so on3 until we get to the nth equation, which we

could then solve for xn and plug back in to get the rest.

5.2 Remarks

First we wish to understand the complexity of the solution. Suppose we even start with all integers

defining the system, how many bits do we need to represent x? In particular, we’d like to prove that

the number of bits is not exponential in n because if it is any algorithm to solve the system would also

be exponential in runtime simply because of the description complexity of the output. We’d also like to

better understand the cases when Gaussian Elimination fails.

3If all goes well at least.

5

6 Looking Ahead

Here we will just establish a list of facts from linear algebra that we’ll be using. If any are a surprise,

they would be worth reviewing.

If A is a square matrix, the following are equivalent:

1. A is invertible

2. Det(A) 6= 0

3. Columns of A are linearly independent

4. Rows of A are linearly independent

5. Ax = b has a unique solution

Next time we’ll continue by proving the following:

Claim 4. The solution to Ax = b has polynomial length description in n if A is composed of integers.

We’ll also start talking about duality and algorithms for linear programming.

6

