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1 Definitions and Motivations

Recall from last lecture we define the Laplacian and its normalized form for a graph G = (V,E) as:

L = D −A

L̂ = D−1/2LD−1/2

with

0 = µ1 ≤ µ2 ≤ · · · ≤ µn ≤ 2

where µ1, · · · , µn are the sorted eigenvalues of L̂.

Definition 1. A cut is defined as a separation of a graph G into two subsections S and S̄.

Definition 2. A graph is disconnected if there are no edges across a cut. We define a boundary of S as:

∂S = {(i, j) ∈ E, i ∈ S, j ∈ S̄}

Theorem 3. µ2 = 0⇐⇒ G is disconnected.

Proof. This can easily be shown by the fact that we break down the adjacency matrix into two separate

parts. Each part is its own distinct graph, thus there will be at least one other eigenvalue equal to 0.

1.1 Conductance

We want to develop a quantitative statement to show how close to disconnected a graph is. This motivates

the idea of conductance.

Definition 4. We define the conductance of a cut S to be:

φ(S) ,
|∂S|
volS

where vol(S) ,
∑
i∈S

di

We define the conductance of a graph G to be

φ(G) = min
S⊂V

φ(S) s.t. 0 < vol(S) ≤ vol(V )

2

or in other words

φ(G) = min
S:vol(S)6=0

|∂S|
min{vol(S), vol(S̄)}
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Note that φ(S) 6= φ(S̄) as we divide by the total number of edges in S. We generally look at sets with

less than 1
2 the edge volume for this reason.

Note we can also consider an alternate variation of conductance of S as the following:

φ(S) =
# edges crossing S → S̄

2(# internal edges) + (# edges S → S̄)
≤ 1

Remark 5. Computing φ(G) is NP-hard. Moreover, even computing to a constant factor approximation

is NP-hard.

2 Cheeger’s Inequality

This motivates Cheeger’s Inequality, which we define as follows:

Theorem 6.
µ2
2
≤ φ(G) ≤

√
2µ2

Cheeger’s inequality allows us to bound the connectivity of a graph, and get an idea of how “connected”

a graph is just from its Laplacian. The left-hand inequality is somewhat easier and more “intuitive” to

prove, while the right-hand inequality involves a much more involved proof.

2.1 Proof of µ2
2
≤ φ(G)

Note that the motivation for this proof comes from the idea that if µ2 is small we should be able to find

a cut in G that has small conductance.

Proof. This is the “easier” of the two inequalities to prove.

Recall that

µ2 = min
x 6=0, x⊥v1

xT L̂x

‖x‖2
φ(G) = min

S: 0<vol(S)≤ vol(G)
2

Φ(S)

Thus, it is sufficient to exhibit an x such that R(x) ≤ 2φ(S∗), where S∗ = arg minS Φ(S)

Fact 7.

yTLy =
∑

(i,j)∈E

(yi − yj)2

Using this fact, we try to construct a vector x to map R(x) to φ(S∗)

µ2 = min
x 6=0, x⊥v1

R(x) = min
x6=0, x⊥v1

xTD−
1
2LD−

1
2x

‖x‖2

Perform the substitution y = D−
1
2x, then we can minimise with respect to y

µ2 = min
y

yTLy

yTDy
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We now set y = 1S∗ , where we define y as:

yi =

{
1 if i ∈ S∗

0 otherwise

Note now that the numerator in our expression for µ2 becomes:

yTLy =
∑

(i,j)∈E

(yi − yj)2 = |∂S∗|

The second equality follows from the definition of yi, where only an edge crossing from S to S will con-

tribute to the summation. Now that we have constructed a y that relates the R(x) to |∂S∗|, we need to

prove the corresponding vector x is orthogonal to v1 (since clearly x 6= 0).

We will modify y such that x becomes perpendicular to v1. Consider y′ , y − σ1n, where σ is some

constant. Note that we still have

(y′)TLy′ = |∂S∗|

Also, recall that v1 = (
√
d1 · · ·

√
dn)T . Our objective is now to set σ such that

v1 ·D−
1
2 · y′ = 0 ⇐⇒ 1 ·D · y′ = 0

⇐⇒
∑
i∈[n]

di(yi − σ) = 0

⇐⇒
∑
i∈[n]

diyi = σ
∑
i∈[n]

di

⇐⇒ vol(S) = σ · vol(V )

Thus, if we set σ = vol(S)
vol(V ) , we have x⊥v1 as desired. Also note that we always choose the smaller half of

of the graph for S, so we have σ ≤ 1
2 .

Finally, we need to calculate (y′)TDy′ for the denominator:

(y′)TDy′ =
∑
i∈[n]

y′idiy
′
i

=
∑
i∈S∗

(1− σ)2di +
∑
i/∈S∗

(−σ)2di

= (1− σ)2vol(S∗) + σ2(vol(V )− vol(S∗))
= (1− σ)vol(S∗)
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Putting everything together, we get:

R(y′) =
(y′)TLy′

(y′)TDy′

=
|∂S∗|

(1− σ)vol(S∗)

=
φ(S∗)

1− σ
≤ 2φ(S∗)

2.2 Proof of φ(G) ≤
√
2µ2

The proof is very involved, but we will outline a general strategy to approach the proof. Our motivation

is to show that if µ2 is small, the conductance should be small as well and thus we should be able to

construct a cut that is small.

Proof. Suppose that v2 is the second eigenvector, or in other words R(v2) = µ2. We want to construct a

set S such that:
|∂S|

min{vol(S), vol(S̄)}
≤

√
2R(vw)

The question is now how do we construct a set given this eigenvector. As this is a proof sketch, we claim

that we can do this with the following algorithm.

- Sort vertices by their value in y , v2, so we have y1 ≤ y2 · · · ≤ yn

- Consider every cut St = {i; yi ≤ t}

- Output arg mint φ(St)

The objective of this algorithm is to essentially find the “cut threshold” that will give us the graph with

the least conductance, which we can then show to be less than the RHS of our inequality. As a side

remark, it’s easy to verify that the algorithm described above runs in O(m) time after computing the

second eigenvector v2.

More regarding Cheeger’s Inequality will be described in later lectures.
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