
COMS 4995-2: Advanced Algorithms (Spring’20) Feb 20, 2020

Lecture Lecture 10: Laplacian

Instructor: Alex Andoni Scribes: Jiahe Shi, Pierre Tholoniat

1 Reminder: Spectral Decomposition for Graphs

A is the n× n adjacency matrix.

D is the diagonal matrix of degrees.

Â = D−1/2AD−1/2.

And we proved last time that eigenvalues λ1...λn satisfy −1 ≤ λn ≤ ... ≤ λ1 = 1, where eigenvector v1 is

proportional to (
√
d1, ...,

√
dn)T .

Theorem 1. λ2 < 1 if and only if G is connected

Proof. We can prove this theorem by showing that if G is disconnected, then λ2 = 1.

Since G is disconnected, we can reorder the nodes, such that the adjacency matrix has a connected

component on its upper left corner, and the rest on the lower right corner. There are no edges between

them, so we can treat them as two separate matrix, and do spectral analysis on them independently.

Thus, each would have a eigenvalue of 1.

Remark: the number of eigenvalues equal to 1 is equal to the number of connected components.

2 Laplacian

2.1 Definition

Define Normalized Laplacian:

L̂ = I − Â

L̂ has eigenvalues µ1 ≤ µ2 ≤ ... ≤ µn. We can observe that the eigenvectors v1, v2, ..., vn of Â are also

eigenvectors of L̂. We can show this by considering vi:

L̂vi = (I − Â)vi = vi − λivi = (1− λi)vi

Thus, µi = 1− λi is an eigenvalue of L̂. From this, we know that 0 = µ1 ≤ µ2 ≤ ... ≤ µn ≤ 2.

L̂ = I −D−1/2AD−1/2

D1/2L̂D1/2 = D −A
= L
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Here, we define L as Laplacian.

Claim 2. ∀x ∈ Rn, xTLx =
∑

e∈E(xi − xj)2

Proof. Let’s define Le for some edge e = (i, j) to be laplacian of the graph whose only component is e.

Then L is the summation of all such sub graphs: L =
∑

e∈E Le. This means, we can rewrite the above

expression xTLx as:

xTLx =
∑
e∈E

xTLex

=
∑

e=(i,j)

x2i + x2j − xixj − xjxi

=
∑
e

(xi − xj)2

2.2 Intuition of Laplacian

We can think about a network of resistors. Suppose every vertex is a resistor. Let K be the current,

and kij be the current between i and j. Let xi be the potential at i, and assuming all the resistances

are one. Then, we can show that kij = xj − xi, and the energy dissipation, which is potential difference

times current, Ei,j = (xj − xi) ∗ kij = (xj − xi)2. The total dissipation is the sum of Eij for all the edges,

which corresponds exactly to the Laplacian xTLx =
∑

e(xi−xj)2. So the quadratic form xTLx can been

thought of as some energy dissipation, where x is the potential at different nodes.

2.3 Normalized Laplacian

The quadratic form with normalized Laplacian is:

xT L̂x = xTD−1/2LD−1/2x

=
∑

e=(i,j)

(
xi√
di
− xj√

dj
)2

2



which by definition is always positive, and the smallest eigenvalue µ1 by definition is:

µ1 = min
xT L̂x

‖x‖22
≥ 0

Claim 3. If G is connected, then µ2 > 0

Proof. We will instead prove that if µ2 = 0, then G is disconnected. If µ2 = 0, it implies that

∃x, x⊥v1, R(x) =
xT L̂x

‖x‖22
= 0, which implies ∀e = (i, j),

xi√
di
− xj√

dj
= 0. Define β =

x1√
d1

, this

quantity β for every node must be equal.

If G is connected, then β =
x1√
d1

for all i ∈ [n], which implies x is proportional to (
√
d1, ...,

√
dn)T = v1.

But this cannot be the case, because we defined x to be perpendicular to v1.

Thus, G must be disconnected.

Theorem 4. µ2 > 0 if and only if G is connected

3 Drawing graphs: spectral representation

Goal of this section. The eigenvectors of the normalized Laplacian v1, . . . , vn are vectors in Rn that

assign a real value for each node. We know that v1 = (
√
d1, ...,

√
dn). We also know that v2 tells us

something about whether G is connected. But what does v2 look like? And what about v3?

3.1 Matlab experiments

Representing a graph in 2D. Suppose we want to represent a graph G in 2 dimensions. We can

assign a point (xi, yi) of the plane R2 for each node i, and draw a line between each pair of points that

are associated an edge (i, j) ∈ E.

Representing using the Laplacian eigenvectors. We are free to choose any representation for G.

Let us try the following one, that associates to each node i the ith coordinate of the second and the third

eigenvectors of the normalized Laplacian:

∀i ∈ [n], (xi, yi) = (v2i, v3i)

Surprisingly, this choice of representation gives intuitive 2D drawings of graphs without any a priori

geometrical knowledge of it – the graph is only described by its combinatorial properties.

Simple geometric examples. For example:

• If A is a “square” graph defined by V = [4] and E = {(1, 2), (2, 3), (3, 4), (4, 1)}, the representation

defined by Lap(A)’s eigenvectors looks like an actual square.

• If A corresponds to a cube, its 2D representation looks like a cube squashed on a plan, i.e. a cube

in perspective.
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• For an hypercube, or a cube in dimension 5, the 2D representation is still nice.

• If A corresponds to a grid, its 2D representation is an actual grid, albeit slightly tilted.

See the Matlab code (when uploaded with the course material) for more examples.

What about 3D representations? We can plot a graph in 3D by using v2, v3, v4 instead of v2, v3
only. For example, the spectral representation of a dodecahedron in 3D corresponds to the canonical

representation in 3D.

3.2 Drawing a graph in 2D

After these experiments, let us now try to understand why spectral representations make sense. This

section is not very formal.

General problem. How to draw a graph nicely in a plane? For example, suppose that we have some

abstract graph such as a social network, given as an adjacency matrix. How to represent this graph in

the most human readable form?

Formalization. We are looking for a function that associates a point of the plane R2 to each node in

V = [n]:

i ∈ V 7→ (xi, yi) ∈ R2

Instead of reasoning about functions, i.e. elements of (R2)n, we can reason about vectors as elements

of (Rn)2). Thanks to this bijection, the problem is equivalent to finding two vectors X,Y ∈ Rn that

represent the graph nicely.

Error minimization. Intuitively, we would like to draw G such that for all nodes i, j, if (i, j) ∈ E

then the i and j are close in the representation.

In other words, we want to minimize the error E(x, y) defined by:

E(X,Y ) :=
∑

(i,j)∈E

‖(Xi, Yi)− (Xj , Yj)‖22 =
∑

(i,j)∈E

(Xi −Xj)
2 + (Yi − Yj)2

We choose the euclidean distance quite arbitrarily, but it is a common choice (Mean Squared Error)

and has nice mathematical properties.

Problem 1.

min
X,Y

E(X,Y )

A simple solution to this problem is to put all the points together at (0, 0). It is not a very useful

representation of a graph, we would like some tension that keeps points apart.
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Problem 2. Let us reason in dimension 1 first. We can try to avoid the first problem by fixing the

norm of X.

min
‖X‖22=1

E(X)

Once again, we can reach E = 0 with an uninteresting solution where X =
(

1√
n
, . . . , 1√

n

)
.

Note that E(X) =
∑

(i,j)∈E(Xi − Xj)
2 = XTLX: it is the Laplacian quadratic form (see claim in

Section 1). The solution X =
(

1√
n
, . . . , 1√

n

)
is actually the first eigenvector of L.

Problem 3. We need to force X to be even more spread out. Let us fix ‖X‖22 = 1 and also force∑
iXi = 0 i.e. 1 ·X = 0 i.e. 1⊥X, to make sure that the coordinates of X are not all equal.

min
‖X‖22=1,1⊥X

E(X)

We have E(X) = XTLX. By the theorem on Rayleigh quotients, for R(X) = XTLX
‖X‖2 for X 6= 0, we

have λi = maxX 6=0,X⊥v1,...,vi−1
R(X). Hence, a solution to Problem 3 is v2, the second eigenvector of L.

Problem 4. Let us go back in 2D.

min
‖X‖22=1,1⊥X
‖Y ‖22=1,1⊥Y

E(X,Y ) = XTLX + Y TLY

In this problem, X and Y are optimized independently so a solution is to put them both equal to v2.

Problem 5. We want Y to give a maximum of information after we conditionalize by X.

min
‖X‖22=1,1⊥X

‖Y ‖22=1,1⊥Y,X⊥Y

E(X,Y ) = XTLX + Y TLY

The optimal solution is to take v2 for X and v3 for Y (if we minimize X first, otherwise we might

have to swap v2 and v3).

Remark. This problem is not the only way to represent nicely a graph, but it is reasonable.
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