1 Introduction and Schedule

1.1 Topics

In this class, we will frequently talk about randomized algorithms (e.g. P_A(algorithm correct) \geq 90%, P_A(has runtime $O(n)$) \geq 90%) as well as approximate algorithms (i.e. if α is the correct answer, algorithm A has approximation answer if it outputs $\hat{\alpha}$ s.t. $\alpha \leq \hat{\alpha} \leq a\alpha$, where a is constant). A list of specific topics is shown below.

1. hashing
 - $h : u \rightarrow [n]$ ($[n] = \{1, 2, 3, ..., n\}$)
 - perfect hashing $O(1)$ worst case per query
 - consistent hashing

2. graph algorithms
 - combinatorial in nature
 - max-flow

3. spectral graph algorithms, linear algebra techniques
 - A (n x n matrix) = adjacency matrix of G, $A_{ij} = 1$ iff (i, j) is an edge
 - look at spectral decomposition of A
 - random walk
 - spectral partitioning / clustering

4. optimization
 - linear programming
 - duality
 - polynomial time algorithm for linear programming
 - iterative method (gradient descent, second order method)
 - interior point method
 - multiplicative weights update, online algorithm

5. large scale models
• cache models (CPU(register) \(\xrightarrow{\text{fast}}\) cache \(\xrightarrow{\text{slow}}\) memory)
• parallel algorithms (map-reduce)

6. extra
• fast fourier transform (FFT)
• elliptic-curve cryptography (ECC)
• exhaustive search

1.2 Prerequisite

1. math
• probability theory
• linear algebra

2. CS/algorithm
• \(O(), \Omega()\)
• runtime analysis
• sorting, binary search, basic graph algorithms

1.3 Deliverables

1. scribe one lecture
• 10%
• due next day midnight

2. homework
• 55%
• 5 in total (1 in every 2 weeks)
• late policy: 5 late days in total, 10% penalty per day up to 7 days

3. project
• 35%
• options
 – reading based / survey
 – implementation based
 – research oriented
• Progress Report 1 (5%) (a few pages)
• Progress Report 2 (5%) (a few pages)
• Final Project (25%) (10 pages)
2 Counting and Morris’ Algorithm

Let \(n \) be the number of objects or ticks we would like to count. What is the space complexity required to count to \(n \)? It turns out that \(O(\log(n)) \) bits is required to exactly count to \(n \).

Theorem 1. To exactly count to \(n \), we cannot do better than \(\Omega(\log(n)) \).

However, if the task is approximate counting rather than exact counting, then the problem can be solved much more efficiently via **Morris’ algorithm**. The key idea is to use randomized algorithm in order to achieve \(O(\log(\log(n))) \) space complexity. The details of the algorithm is shown below:

1. Initialize the counter \(X \) to 0
2. For each tick, update \(X \leftarrow X + 1 \) with probability \(2^{-X} \), and leave \(X \) unchanged with probability \(1 - 2^{-X} \)
3. output the estimate \(\hat{n} = 2^X - 1 \)

3 Probability

Definition 2 (Expectation). For a discrete random variable \(X \), the expectation of \(X \) is

\[
E[X] = \sum_a aP[X = a]
\]

For a continuous random variable \(X \), the expectation of \(X \) is

\[
E[X] = \int af(a)da
\]

where \(f \) is the probability density function (PDF) of \(X \).

Lemma 3 (Linearity of Expectation). Let \(X \) and \(Y \) be two random variables, then

\[
E[X + Y] = E[X] + E[Y]
\]

Lemma 4 (Markov’s inequality). Let \(X \) be a non-negative random variable. For all \(\lambda > 0 \),

\[
P[X > \lambda] \leq \frac{E[X]}{\lambda}
\]

Definition 5 (Variance). Let \(X \) be a random variable. The variance of \(X \) is

\[
\]

Lemma 6 (Chebyshev’s Inequality). Let \(X \) be a random variable. For all \(\lambda > 0 \),

\[
P[|X - E[X]| > \lambda] \leq \frac{Var[X]}{\lambda^2}
\]
4 Analysis of Morris’ Algorithm

Define X_n as the value of counter X after n ticks, and define $X_0 = 0$. We want to show that the expectation of the output \hat{n} is in fact the actual count.

Claim 7. $E[2^{X_n} - 1] = n$

Proof. We will prove by induction. First, we check the base cases: for $n = 0$, $E[2^{X_0} - 1] = 0$; for $n = 1$, $E[2^{X_1} - 1] = 1$. Now assume for inductive hypothesis that $E[2^{X_{n-1}} - 1] = n - 1$; we want to show $E[2^{X_n} - 1] = n$. We have:

$$E[2^{X_n} - 1] = E_{X_n, X_{n-1}, \ldots, X_1}[2^{X_n} - 1]$$
$$= E_{X_n-1, \ldots, X_1}[E_{X_n}[2^{X_n} - 1]]$$
$$= E_{X_n-1, \ldots, X_1}[2^{-X_{n-1}}(2^{X_{n-1}}+1) - 1 + (1 - 2^{-X_{n-1}})(2^{X_{n-1}} - 1)]$$
$$= E_{X_n-1, \ldots, X_1}[2^{-X_{n-1}} + 2^{X_{n-1}} - 1 - 1 + 2^{-X_{n-1}}]$$
$$= E_{X_n-1, \ldots, X_1}[2^{-X_{n-1}}]$$
$$= E[2^{-X_{n-1}} + 1 - 1] = n - 1 + 1 = n$$

\square