
COMS 4995: Advanced Algorithms Jan 22, 2020

Lecture 1 – Introduction, Schedule, Approximate Counting

Instructor: Alex Andoni Scribes: Yiming Wang, Zhaoyang Wang

1 Introduction and Schedule

1.1 Topics

In this class, we will frequently talk about randomized algorithms (e.g. PA(algorithm correct) ≥ 90% ,

PA(has runtime O(n)) ≥ 90%) as well as approximate algorithms (i.e. if α is the correct answer, algorithm

A has approximation answer if it outputs α̂ s.t. α ≤ α̂ ≤ aα, where a is constant). A list of specific

topics is shown below.

1. hashing

• h : u→ [n] ([n] = {1, 2, 3, ..., n})
• perfect hashing O(1) worst case per query

• consistent hashing

2. graph algorithms

• combinatorial in nature

• max-flow

3. spectral graph algorithms, linear algebra techniques

• A(n x n matrix) = adjacency matrix of G, Aij = 1 iff (i, j) is an edge

• look at spectral decomposition of A

• random walk

• spectral partitioning / clustering

4. optimization

• linear programming

• duality

• polynomial time algorithm for linear programming

• iterative method (gradient descent, second order method)

• interior point method

• multiplicative weights update, online algorithm

5. large scale models

1



• cache models (CPU(register)
fast←→ cache

slow←→ memory)

• parallel algorithms (map-reduce)

6. extra

• fast fourier transform (FFT)

• elliptic-curve cryptography (ECC)

• exhaustive search

1.2 Prerequisite

1. math

• probability theory

• linear algebra

2. CS/algorithm

• O(), Ω()

• runtime analysis

• sorting, binary search, basic graph algorithms

1.3 Deliverables

1. scribe one lecture

• 10%

• due next day midnight

2. homework

• 55%

• 5 in total (1 in every 2 weeks)

• late policy: 5 late days in total, 10% penalty per day up to 7 days

3. project

• 35%

• options

– reading based / survey

– implementation based

– research oriented

• Progress Report 1 (5%) (a few pages)

• Progress Report 2 (5%) (a few pages)

• Final Project (25%) (10 pages)
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2 Counting and Morris’ Algorithm

Let n be the number of objects or ticks we would like to count. What is the space complexity required

to count to n? It turns out that O(log(n)) bits is required to exactly count to n.

Theorem 1. To exactly count to n, we cannot do better than Ω(log(n)).

However, if the task is approximate counting rather than exact counting, then the problem can be solved

much more efficiently via Morris’ algorithm. The key idea is to use randomized algorithm in order to

achieve O(log(log(n)) space complexity. The details of the algorithm is shown below:

1. Initialize the counter X to 0

2. For each tick, update X ← X + 1 with probability 2−X , and leave X unchanged with probability

1− 2−X

3. output the estimate n̂ = 2X − 1

3 Probability

Definition 2 (Expectation). For a discrete random variable X, the expectation of X is

E[X] =
∑
a

aP [X = a]

For a continuous random variable X, the expectation of X is

E[X] =

∫
af(a)da

where f is the probability density function (PDF) of X.

Lemma 3 (Linearity of Expectation). Let X and Y be two random variables, then

E[X + Y ] = E[X] + E[Y ]

Lemma 4 (Markov’s inequality). Let X be a non-negative random variable. For all λ > 0,

P [X > λ] ≤ E[X]

λ

Definition 5 (Variance). Let X be a random variable. The variance of X is

V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2

Lemma 6 (Chebyshev’s Inequality). Let X be a random variable. For all λ > 0,

P [|X − E[x]| > λ] ≤ V ar[X]

λ2
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4 Analysis of Morris’ Algorithm

Define Xn as the value of counter X after n ticks, and define X0 = 0. We want the show that the

expectation of the output n̂ is in fact the actual count.

Claim 7. E[2Xn − 1] = n

Proof. We will prove by induction. First, we check the the base cases: for n = 0, E[2X0 − 1] = 0; for

n = 1, E[2X1 − 1] = 1. Now assume for inductive hypothesis that E[2Xn−1 − 1] = n− 1; we want to show

E[2Xn − 1] = n. We have:

E[2Xn − 1] = EXn,Xn−1,...,X1 [2Xn − 1]

= EXn−1,...,X1 [EXn [2Xn − 1]]

= EXn−1,...,X1 [2−Xn−1(2Xn−1+1 − 1) + (1− 2−Xn−1)(2Xn−1 − 1)]

= EXn−1,...,X1 [2− 2−Xn−1 + 2Xn−1 − 1− 1 + 2−Xn−1 ]

= EXn−1,...,X1 [2−Xn−1 ]

= E[2−Xn−1 + 1− 1] = n− 1 + 1 = n
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