Error-Correcting Codes

Berlekamp-Welsh

Source alphabet:

Message: S^n

Code: encode $E: S^n \rightarrow \Sigma^k$,

$k = \text{length of codeword}$

$\Sigma = \text{alphabet}$

Decode: $D: \Sigma^k \rightarrow S^n$

$d = 1$,

properly: $E(f_{in}) = f_{out}$

1) erase & replace S^n with $D(E(f_{in}))$

2) error, e chosen

3) delete f_{in}, f_{out} chosen

Message: $\Sigma^k \rightarrow \Sigma^n$

Decoding:

- Communication
- Storage: full-blank
- noisy code: bit flips
- bit flips on e hard drive

Can we do better?

Yes: would $n \leq k$,

So sound to be decoded & map

Code:

$E: \Sigma^k \rightarrow \Sigma^n$

- correct errors in f_{out}

Received: $E(f_{in})$

Correct: d errors in $E(f_{in})$

$\text{Min. dist.} = d$

$1)$ error (substitution)

Decide: map $E(f_{in})$ to $E(f_{out})$

$E(f_{in})$ contains e errors.

Received: $E(f_{out})$

Correct: $d - 1$ errors in $E(f_{in})$

$2)$ error (substitution)

Decide: map $E(f_{in})$ to $E(f_{out})$

$E(f_{in})$ contains e errors.

Received: $E(f_{out})$

Correct: $d - 1$ errors in $E(f_{in})$
\(N = \alpha \cdot k \) for \(\alpha = 0(1) \)
\(d = \beta \cdot N \) \(\beta = \Omega(1) \).

\(\Rightarrow \) can tolerate a constant fraction of failures.

E.g., take \(C = \) set of \(2^k \) random vectors in \(\mathbb{F}_q^k \) (for \(q = 2, 9, 13 \)).

\[E \] any map \(\begin{array}{c} \mathbb{F}_q^k \rightarrow C \\ 0 \end{array} \)

\(D \): decode to closest codeword.

Issue: how to compute \(E(D) \) efficiently, time \(\sim 2^k \), want's time \(\text{poly}(k) \).

Reed–Solomon codes

for \(\Sigma \) “large”.

\(\Sigma = \mathbb{F}_p \sim \) integer arithmetic modulo \(p \) prime.

Def: of the RS code:

\[C = \{ f(x_1), f(x_2), \ldots, f(x_n) \} ; \]

\(f(x) = \sum_{i=0}^{k-1} x^i f_i \) \(\mathbb{F}_p \)

where \(\alpha_1, \ldots, \alpha_n \) are distinct in \(\mathbb{F}_p \).

an input message is encoded into a polynomial with coeff. \(= \) message.

\((f(x), \ldots, f(x_n)) \rightarrow (f(x_1), f(x_2), \ldots, f(x_n)) \).

Parameters of the RS code?

think of \(n = \Theta(k) \).

Lem: min dist in RS code is \(d = n-k+1 \).

E.g., \(n = 2k \Rightarrow d = k+1 \)

\(\Rightarrow \) can tolerate \(k \) errors.

(2/2 sends).