
COMS E6998-9: Algorithmic Techniques for Massive Data Sep 17, 2015

Lecture 4 – CountSketch and High Frequencies

Instructor: Alex Andoni Scribes: Jeffrey Martin

1 From CountMin to CountSketch

1.1 Recap

During the previous lecture we learned that the 2nd moment is defined as F2 =
∑

i f
2
i , and that it can

be probabilistically approximated by the Tug of War algorithm.

We also learned that the “heavy hitters” – elements fi with fi > φF1 for some φ – can be identified up

to multiplicative error ε in φ by CountMin. CountMin achieves this bound by running the Heavy Hitters

algorithm repeatedly and taking the minimum of observed estimator for each fi. Due to the upward bias

in Heavy Hitters estimators, the minimum observed estimator for fi must exceed φ(1 + ε) for fi to be

reported; else CountMin’s probabilistic guarantees won’t hold. Analogously, the minimum observed fi
must be less than φ(1− ε) for fi to be reported as not being a heavy hitter.

In more detail, the algorithm1 is:

Initialize(r, L):

array S[L][w]

L hash functions h1, . . . , hL, into {1, . . . , w}

Process(int i):

for (j = 0; j < L; ++j)

S[j][hj(i)] += 1

Estimator:

foreach i in PossibleIP:

f̂i = medianj(S[j][hj(i)]

Total space required is O(lognεφ).

2 CountMin Linearity

Suppose two different frequency estimates f ′ and f ′′ are computed over the same range [n] using the

same hash hj . In this case, the following linearity property holds:

CountMin(f ′ + f ′′) = CountMin(f ′) + CountMin(f ′′)

1verbatim from the pervious lecture’s notes

1

This follows immediately from the fact that each item in each stream gets counted onc, and both

streams count item i in the same bucket hj(i): adding up f ′ and f ′′ amounts to adding their buckets

individually and thus adding up the frequencies of each i.

3 CountSketch

3.1 P-norms

(This section is here due to its timing in the lecture. It appears somewhat later in the lecture slides.)

The p-norm of a vector x, denoted by ||x||p is defined as:

||x||p =
(∑

(xi)
p
)1/p

There are two special cases deserving of attention. The 0-norm just counts the number of non-zero

elements in x, because xpi is always either zero (if xi is zero) or one (otherwise). The ∞− norm plucks

out the largest element of x, the intution being that in the limit as p → ∞, the p-norm converges on

maxi∈x i.

3.2 Generalizations of CountMin

While CountMin is linear for f ′ + f ′′ in the cases observed so far, there are generalizations that it is less

effective for. For instance, if both positive and negative frequencies are allowed, our reliance on selecting

the minimum value becomes problematic. We also need to redefine “heavy hitters”, for instance by using

absolute values of frequencies, like in this criterion: |fi| ≥ φ
∑

j |fj |.

3.3 CountSketch: the Algorithm

One improvement to CountMin is to focus not on estimating fi itself but instead estimate f2i . This can

be accomplished by applying Tug of War within each bucket. As we saw previously, Tug of War estimates

F2, so applying Tug of War to all estimators of fi gotten from repeated instance of Heavy Hitters will

yield an estimator for f2i . At that point, the median trick may be applied.

The resulting algorithm is this:

Initialize(L, w):

array S[L][w]

L hash functions h1, . . . , hL, into {1, . . . , w}
L hash functions r1, . . . , rL, into {−1, 1}

Process(int i, real δi):

for (j = 0; j < L; ++j)

S[j][hj(i)] += rj(i)δl

Estimator:

foreach i in PossibleIP:

f̂i = medianj(S[j][hj(i)]

2

4 From CountSketch to Compressed Sensing

4.1 k-sparse Approximation

A large piece of data like an image often must be compressed to be stored. One approach to compression

is to take the Fourier transform of the data (which will be a vector) and store only a subset that is

hopefully representative enough to make producing an approximation to the original dataset possible.

This motivates the following definition:

Definition 1. Given a vector f ∈ Rn, a k-sparse approximation to it is f∗ ∈ Rk such that ||f∗ − f || is

minimized.

For any vector f ∈ Rn, its k-sparse approximation is f∗ consisting of its k largest (by absolute value)

elmeents.

4.2 Compressed Sensing

Definition 2. Compressed sensing is the following problem: for some vector f ∈ Rn, provide a matrix

S such that an approximation to the k-sparse approximation to f may be computed from Sf

The problem may be solved trivially by choosing S = In (the n × n identity matrix), but the ac-

complishment is in achieving a good space/accuracy tradeoff. The following theorem achieves such a

tradeoff:

Theorem 3. Using O(k log n) space, the k-sparse approximation may be approximated with the following

error guarantee by f̂ :

||f∗ − f || ≤ min
k−sparsef̂

||f̂ − f ||

Superior results may be achieved by adaptively updating S, but this was not elaborated on during

the lecture.

4.3 CountSketch as CS Special Case

Let S be a k × n matrix in which each row has exactly n/k entries set to 1 and the rest set to 0, and

let each column have only a single entry set to 1. Then the k × n matrix is essentially a hash table with

k buckets – the elements are uniformly distributed across buckets (hence n/k per row) and appear in

exactly one bucket (hence 1 per column). Then, taking Sf amounts to hashing adding up the frequencies

for each of the k buckets. The heavy hitters correspond in this case to the k largest elements, for teh

choice of φ = 1/2k.

5 Moments

Definition 4. The p-th moment of f , denoted by Fp, is
∑
fpi .

Compressed sensing’s performance varies for different moments. In the cases of F0 and F2, we can

approximate in space only O(log n) as we saw in the Flajolet-Martin and Tug of War algorithms, respec-

tively. In the case of p =∞, the moment is inapproximable as shown in Lecture 3, although heavy hitters

may be determined. For 2 < p <∞, we can use Precision Sampling (next section) to approximate using

space only Θ(n1−2/p log2 n)

3

6 Precision Sampling

6.1 Estimate a Sum

Given n numbers a1, . . . , an ∈ [0, 1], how can one estimate a1 + . . . + an at minimal cost? “Standard

sampling” is the obvious solution – randomly pick a subset of size m, take its average, and multiply by

n/m to get the estimator S̃. Unfortunately, to get constant additive error we need a sample of size Ω(n).

Why? The Chebyshev bound tells us that 90% of the time,

S −O(n/m) < S̃ < S +O(n/m)

Tightening that bound to any arbitrary S ± ε requires m be of the same order as n.

6.2 Precision Sampling Framework

An alternative to standard sampling is to allow some error in the values of the ai rather than risk the

representativeness of the subset sampled. This approach is “precision sampling”: an algorithm is given

access to ãi such that ai − ui ≤ ãi ≤ ai + ui, for predetermined values of ui. The challenge is then to

achieve a good tradeoff between ui (which are considered costly if small) and the accuracy of the resulting

estimator S̃).

Somewhat more formally, precision sampling can be thought of as a game.

• Adversary: fix a1, . . . , an

• Player: choose u1, . . . , un

• Adversary: fix ã1, . . . , ãn such that |ai − ãi| < ui, and provide these to Player

• Player: output estimate S̃ such that |
∑
ai − γS̃| < 1, for γ ≈ 1

The costliness of Player’s solution is simply computed as
∑ 1

ui
, and the average cost is 1

n

∑ 1
ui

6.3 Precision Sampling Lemma and Algorithm

Lemma 5. With 90% probability of success and average cost O(log n), one can get additive error O(1)

multiplicative error of 10, i.e.

S/10−O(1) < S̃ < S/10 +O(1)

The algorithm that achieves this is straightforward:

• Draw each ui randomly from Exp(1), a probability distribution described by probability density

function: p(x) = e−x

• Return S̃ = maxi ãi/ui

Proof of accuracy bound:

As per the problem definition, for all i, |ai − ãi| ≤ ui from which it follows that |ai/ui − ãi/ui| ≤ 1. We

further know that u1, . . . , un are drawn form Exp(1).

4

The exponential distribution satisfies the following property: for any λ1, . . . , λn > 0

min
i∈[n]

ui
λi

is distributed as
u∑
λi

where u has Exp(1) distribution as well. Taken together, these give

S̃ = max
ãi
ui

=

∑
ai

Exp(1)
± 1

.

Now note that Exp(1) ∈ [1/10, 10] with probability e−1/10 − e−10 > 0.9. Hence

S/10− 1 ≤ S̃ ≤ 10S + 1.

Proof of average cost:

Average cost is E[1/ui]. Because we got each ui by drawing from Exp(1), this amounts to E[1/Exp(1)].

That, in turn, is the integral ∫ ∞
0

1

u
e−udu

The integral diverges, unfortunately, but can be broken up into coverging and diverging parts∫ 1

0

1

u
e−udu+

∫ ∞
1

1

u
e−udu

The right-hand portion is ≤ 1 because both 1
u and e−u are always ≤ 1 on [1,∞] so this must hold

true for the integral of their product. This leaves the left-hand portion which still diverges but may be

decomposed into ∫ 1/n3

0

1

u
e−udu+

∫ 1

1/n3

1

u
e−udu

Once again, the right-hand portion can be bounded, this time by O(ln(n3)) due to results from analysis.

The left-hand portion still diverges, but is consequential only if u < 1/n3 – and that happens with prob-

ability O(1/n3). Thus if we allow for a O(1/n3) chance of the algorithm failing, we have bounded the

cost of the algorithm by O(ln(n3)) +O(1), which is itself O(log n).

The slides continue past this but the lecture did not.

5

