
COMS E6998-9: Algorithmic Techniques for Massive Data Dec. 3, 2015

Lecture 24 — MapReduce Algorithms

Instructor: Alex Andoni Scribes: Kui Tang

1 Introduction

We review the computational model of MapReduce algorithms. Our model is more general than the

original Google MapReduce framework: we do not constrain the functional forms of computation (e.g

decomposition into local map and associative reduce functions) but only in terms of space and commu-

nication constraints.

We have M machines with S space per machine, and MS ≈ O(input size). This means we cannot

replicate data too much. We have n inputs and O(n) outputs, but S � n, i.e. neither input nor output

can fit on one machine.

Local computation is cheap but communication (shuffling) is very expensive, so we bound the number

of rounds. In particular, we want rounds R = O(1) for S ≤ nδ, for instance S >
√
n where S > M . We

want O(S) in-communication (how much input each node requires) per round, and ideally linear. (You

cannot have more communication than you have space.)

This model is the culmination of the bulk-synchronous parallel, the original MapReduce, and massively

parallel computing (MPC) frameworks. MR can simulate PRAM algorithms in R = O(parallel time).

But this often takes a logarithmic slowdown, because to collect n items of data in a tree of constant

degree s, we need a depth of O(logs n), which is also how many rounds we must take. In particular, we

need Ω̃(log n) on CRCW PRAMs.

1.1 Sorting

Also called the Terasort problem — sorting a terabyte of numbers.

Suppose S = O(n2/3) and M = O(n1/3). The entire input of n numbers can be sorted in just three

rounds of communication. How?

• Each machine picks some distinguished elements with probability n1/2/n. This means Θ(n1/2)

elements will be selected.

• All machines send the distinguished elements to machine #1. (This fits, since n1/2 < n2/3.)

• Machine #1 chooses approximately equidistant pivots and assign a range to each machine. (For a

particular pivot, its range is the set of numbers which are closer to it than to any other pivot.)

• Machine #1 sends to pivots to each machines.

– Note that each range will have O(n1/2/M) = O(n1/2/n1/3) = O(n2/3) elements.

• Each machine sends all elements in range i to machine #i.

1



• Each machine #i sorts its received elements locally.

Each bolded line indicates a round of communication.

1.2 Connectivity

Consider searching for a certificate of connectivity, e.g. a spanning tree. We call the size of a spanning

tree the solution size. When S � solution size, then we say the problem is dense. We filter input until

it fits on a machine, and with S = n1+δ, we can do it in O(1/δ) rounds.

The sparse case S � solution size is harder. We assume S =
√
n. This is hard, and still open to do

s-t connectivity in � O(log n) rounds.

We consider an easier problem: geometric graphs, which are implicit graphs on n points in Rd.
The weight (cost) on each edge is the euclidean distance in Rd. We assume a geometric graph is fully

connected, connectivity is meaningless. Instead, we seek a minimum-cost spanning tree. This is equivalent

to single-linkage agglomerative hierarchical clustering.

Theorem 1. We can get a (1 + ε) approximation in low dimensional (Rd) space in a constant number

of rounds R = (logs n)O(1) for MST if S ≤ e−O(d) and EMD if S ≥ no(1) for constant ε, d.

We sketch the proof (pun intended) in the following section.

1.3 Solve and Sketch

A general framework for solving problems in linear spaces is to partition the space hierarchically in a

“nice way,” which can be represented in a tree. We then compute bottom-up according to the tree.

Assume each node is one machine (which could be reused). Each node computes a pseudo-solution

for its local view and then sketches this pseudo-solution using a small space, and then sends the sketch to

its parent. We assume each pseudo-solution uses all of the space S on its machine, so a machine cannot

simply send the exact pseudo-solution up to its parent, since the parent would lack space to receive all

pseudo-solutions from all of its children.

We use quad trees for partitioning, local MST for the local pseudo-solutions, and one representative

in the partition as the sketch.

One problem is that quad trees can cut MST edges, which is irrevocable (since we must greedily solve

the local problems). And, we may choose a wrong representative.

So instead of quad trees, we use a randomly shifted grid with side length ∆ and take an ε∆-net called

N .1 The points in N are our entry/exit portals to the cell. That is, if d is the distance on Rd, then

d′(p, q) =

{
d(p, q) p, q in same grid cell

d(p, p′) + d(p′, q′) + d(q′, q) p, q in different cells

where p′ and q′ are the nearest neighbors to p and q respectively in N . We call the operation of finding

p′ and q′ snapping to the ε∆ net. Think of the points in N as airports, so to go from the points in one

region to another, you must first go to the airport.

Claim 2. All distances are preserved by up to 1 + 4ε in expectation.

1A ε∆-net N is a subset of Rd such that for p ∈ Rd, there exists a q ∈ N such that ‖p− q‖ ≤ δ.

2



Proof. Let D denote the event that p and q are in different cells. We have δ = P [D] ≤ 2 ‖p− q‖ /∆ by

construction of the randomly shifted grid. In this case, d(p, p′) ≤ ε∆ so that d′(p, q) = 2ε∆ + ‖p− q‖. In

the other case, d(p, q) = ‖p− q‖. Putting it together, we have

E
[
d′(p, q)− ‖p− q‖

]
= P [D] (2ε∆ + ‖p+ q‖) + (1− P [D]) ‖p+ q‖ − ‖p+ q‖
= 2ε∆P [D]

≤ 4ε ‖p+ q‖

1.3.1 Algorithm

Assume d = 2 and that the entire point set is in a cube of size n2/3 × n2/3 and S � n2/3.

Partition by two levels of randomly-shifted grid of size ∆ = n1/3, such that each local node has size

∆ × ∆ < S. For the pseudo-solution, we run Kruskal’s algorithm locally for edges up to length ε∆.2

To sketch a pseudo-solution, we snap points to ε2∆ net N2 and store the connectivity of the net points.

Being a 2-dimensional ε2∆ net, we have at most O(1/ε4) points. Storing connectivity just means storing

one bit for each point denoting whether it belongs to the MST, so it takes O(1/ε4) space.

Claim 3. The above algorithm is equivalent to running Kruskal’s algorithm on the distance d′ up to a

1 +O(ε) approximation.

Proof. The distance between two cells is at least ε∆ (or else we would not have placed a net point there).

So if we run Kruskal’s locally inside each cell up to distance ε∆, we ensure that the optimal tree in each

cell will not contain any points in adjacent cells. But snapping to the ε2∆-net points introduces a 1 + 2ε

factor error, since all distances are at least ε∆. Putting this together with the results of the previous

claim, we have E [cost of MST] ≤ (1 +O(ε)) MSTopt.

What about improving the local runtime? Kruskal’s algorithms with exotic data structures are near-

linear in the number of edges. But we have fully connected graphs, so these are not good enough. We

need to use approximate Kruskal’s algorithms.

The solution is distributed across the machines. Each machine stores some edges, and the top machine

stores the leftovers.

2 Wrap-up

We review the types of algorithms and problems we’ve covered in this class.

First we discussed streaming algorithms. We covered frequency moments and heavy hitters and

graph algorithms. But we haven’t discussed algorithms for lists, like median/quantile selection, longest

increasing sequence. There are nice algorithms here. Neither have we discussed geometric objects. What

we just did in MR we could also have done in streaming.

Linear sketches are very powerful when they exist. The sketching function S(a+b) = S(a)+S(b) makes

the problem trivially decomposable. For computing `1 and `2 norms, we can get a 1 + ε approximation

in constant space. We also covered dimensional reduction (Johnson-Lindenstrauss) and fast JL (using

2Kruskal’s algorithm: Connect points with the shortest edge that does not introduce a cycle.

3



the fast Fourier transform). They are also useful to speed up classical algorithms, in numerical linear

algebra. Compressive sensing is also a form of linear sketch which is very wide and powerful.

For nearest neighbors, a basic technique is to apply sketching. But LSH and data-dependent LSH are

even better. We can also embed complicated spaces into simpler ones. What we didn’t cover in class is

NNS for general metrics. The complexity depends on a measure of “intrinsic dimension.”

Property testing, or sampling, is an even more restrictive setting. We’ve covered testing distributions

of uniformity and identity (to another distribution). We can also compute entropy or support. There

are also instance-optimal algorithms, which essentially adapts the algorithm as samples come in to get

better bounds for the particular instance. We also covered property testing for graph connectivity. For

dense graphs, there is a regularity lemma, which is really hard. To test for ε-farness, we have bounds of

the form of a tower of 22
...2

of height 1/ε, so reasonably the proofs would also be very hard.

Finally we talked about the MR model, which is the topic of this lecture. The important constraint

is an upper bound on the in-communication complexity.

4


