COMS E6998-9: Algorithmic Techniques for Massive Data

Nov 19, 2015

Lecture 21: Linearity Testing

Instructor: Alex Andoni Scribe: Nikita Nataraj

1 Linear Testing

Given a function f, in linear testing we determine whether it is a linear function: i.e., f(x+y) = f(x) + f(y) for all x, y. Assume that we have the following function:

$$f: \{0,1\}^n \to R$$
$$x \xrightarrow{f} f(x)$$

We can think of f(x) is being describe as a complete truth table, as we can sample f(x). To make this proof easier we map the boolean onto +1 and -1.

$$0 \to +1$$
$$1 \to -1$$

From now on, we will consider the function

$$f: \{+1, -1\}^n \to \{+1, -1\}$$

Definition 1. f is linear if $\forall x, y \in \{+1, -1\}^n$

$$f(x \oplus y) = f(x) \cdot f(y)$$

$$x \oplus y = (x_1y_1, x_2y_2...x_ny_n)$$

The modulus addition is equivalent to a dot product. This is also termed **Homomorphism** (for general groups).

Problem 2. The problem at hand is to distinguish between:

- f is linear
- f is ϵ far from linear, which means the following:

$$\forall g$$
 that is linear

$$f(x) \neq g(x)$$
 on $\geq \epsilon 2^n$ inputs x .

Goal 3. How many queries do we need to solve the above goal with 90% success probability.

Motivation [Blum-Luby-Rubinfield '90]

- self testing
- self correction

- PCP Theorem (probabilistically checkable proof): informally it is as follows. For a given formula φ , we can transform it into φ' , where φ' is satisfiable if and only if φ is satisfiable. For any proof (satisfyable assignment) of φ' , we can check whether it is indeed satisfyable in O(1) places.
- PCP is often used to prove non-approximability: even approximating max clique upto a factor of \sqrt{n} is a NP hard problem.

Algorithm for testing linearity is fairly basic.

- pick x, y randomly
- check the given property $f(x \oplus y) = f(x) \oplus f(y)$. Lets call this T_{xy} (a test for x,y)
- repeat the $T_{x,y}$ test for $O(1/\epsilon)$ times and fail if at least one of them fails.

Analysis of Algorithm

- If the function f is linear, then T_{xy} will pass.
- If the function f is ϵ far from linear, we need to find the $Pr[T_{xy}]$ fails:

$$\Pr[T_{xy} \text{ fails}] = 1 - \Pr[T_{xy} \text{ passes}]$$

 $\geq \epsilon$

Example [Coppersmith]

$$f \colon Z_{3^k} \to Z_{3^{k-1}}$$
 $f(3h+d) = h \text{ (where } d \in \{-1,0,+1\})$

We have that $Pr[T_{xy} \ fails] = 2/9$, but f is 2/3 far from linear.

2 Fourier Analysis

We will show how Fourier analysis can be used to determine linearity. It is given that

$$f: \{+1, -1\}^n \to R$$
, can be seen as a vector $F \in R^d$ where $d = 2^n$
 $\mathcal{F} = \{\text{set of all } f\}$

We define f(x) as a summation of the multiplication of a basis vector and a scalar.

Define:
$$f_i(x) = 1$$
 for $i = x$, and 0 for $i \neq x$
Then, $f = \sum f(i)f_i$, i.e., $f(x) = \sum f(i)f_i(x)$ for all x .

This is equivalent to: a natural basis e_i (where $i \in \{+1, -1\}^n$), $F = \sum x_i e_i$ where x_i is a scalar and e_i is a basis vactor.

We now introduce the Fourier basis. Fix $S \subseteq [n]$, then we define $\chi_S(x)$ as:

$$\chi_s(x) = \Pi x_i \text{ where } i \in S$$

Define $\chi_{\emptyset}(x) = 1$.

Fact χ_S for $S \subseteq [n]$ are a basis for \mathcal{F} .

• There are 2^n of them.

•
$$||\chi_S||^2 = \sum_r (\chi_S(x))^2 = 2^n$$
.

• Dot product:
$$\sum_{x} \chi_{S}(x) \chi_{T}(x) = \sum \prod_{i \in S} x_{i} \prod_{i \in T} x_{i} = \sum \prod_{i \in S \Delta T} x_{i}$$

= $\sum_{x} \chi_{S \Delta T}(x) = \frac{1}{2^{n}} E[\prod_{i \in S \Delta T} x_{i}] = \frac{1}{2^{n}} \prod_{i \in S \Delta T} E[x_{i}] = 0$ if $S \neq T$.

Hence these basis functions χ_S form a basis for \mathcal{F} .

Definition 4. $\langle f, g \rangle \triangleq \frac{1}{2^n} \sum_x f(x)g(x)$ which is essentially a dot product.

In this definition, we get that $\langle \chi_S, \chi_S \rangle = 1$ (norm of a basis vector is one).

Corollary 5. $\forall f$

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x)$$

where $\hat{f}(S)$ is given by $\hat{f}_S = \langle f, \chi_S \rangle$.

Examples of Fourier transform

f(x)	Fourier
1	1
X_i	X_i
AND $(X_2, X_1) = -1$ if $X_2 = X_1 = -1$, 1 otherwise	$\frac{1}{2} + \frac{1}{2}X_1 + \frac{1}{2}X_2 - \frac{1}{2}X_1X_2$
$f = \chi_S$	$\hat{f}_S = 1$ and $\hat{f}_T = 0$ for $T \neq S$

Theorem 6 (Plancherel's). shows that

$$\langle f, g \rangle = \sum_{S \subset [n]} \hat{f}_S \hat{g}_S$$

Proof
$$\langle f, g \rangle = E_x[f(x)g(x)]$$

$$= E\left[\sum_{S\subseteq[n]} \hat{f}(S)\chi_S(x) \sum_{T\subseteq[n]} \hat{g}(T)\chi_T(x)\right]$$

$$= \sum_{S,T} \hat{f}_S \hat{g}_T E[\chi_S(x) \chi_T(x)]$$

The only terms that survive are those in which S = T which makes the expectation value equal 1. Therefore,

$$\langle f, g \rangle = \sum_{S} \hat{f}_{S} \hat{g}_{S}.$$

Theorem 7 (Parseval's). $\langle f, f \rangle = \sum_{S \subseteq [n]} \hat{f}_S^2$

If $f_i\{+,-1\}^n \to \{+1,-1\}$, then, $\langle f,f \rangle = 1$ or can be written as $\sum \hat{f}_S^2 = 1$ by Plancherel's.

3 Proof of Linearity with Fourier Analysis

Lemma 8. χ_S are exactly all the linear functions $f: \{+1, -1\}^n \to \{+1, -1\}$.

Proof. • First we prove χ_S is linear

 $\forall x, y$

$$\chi_S(x \oplus y) = \prod_{i \in S} x_i y_i = \prod_{i \in S} x_i \prod_{i \in S} y_i = \chi_S(x) \chi_S(y)$$

• if f is linear then it is some χ_S (in problem set 5).

 \hat{f}_S relates distance to basis function χ_S . In particular, if f is ϵ -far from linearity, then we have:

$$\hat{f}_S = \langle f, \chi_S \rangle = E_x f(x) \chi_S(x)
= \Pr[f(x) = \chi_S(x)] - \Pr[f(x) \neq \chi_S(x)]
= 1 - dist(f, \chi_S) - dist(f, \chi_S) = 1 - 2dist(f, \chi_S)$$

 $< 1 - 2\epsilon$

Hence, none of the \hat{f}_S coefficients are close to 1, and this will cause the test to fail.

Theorem 9 (Main theorem). Define: $T_{xy} = 1$ if $f(x) \cdot f(y) = f(x \oplus y)$ and it is 0 otherwise. If f is ϵ far then we prove that the $\Pr[T_{xy} = 1] \leq 1 - \epsilon$.

Proof Let $\delta = \Pr[T_{xy} = 0]$.

Lemma 10.
$$\Pr[T_{xy} = 1] = 1 - \delta = \frac{1}{2} + \frac{1}{2} \sum_{S} \hat{f}_{S}^{3}$$
.

We prove that this lemma proves the above theorem.

$$\delta = 1 - (\frac{1}{2} + \frac{1}{2} \sum_{S} \hat{f}_{S}^{3}) = \frac{1}{2} - \frac{1}{2} \sum_{S} \hat{f}_{S}^{3}$$

Since \hat{f}_S is upper bounded by $1-2\epsilon$

$$\geq \frac{1}{2} - \frac{1}{2}(1 - 2\epsilon) \sum_{S} \hat{f}_{S}^{2}$$

As proved above, we have $\sum_{S} \hat{f}_{S}^{2} = 1$. Therefore,

$$\geq \frac{1}{2} - \frac{1}{2} + \epsilon = \epsilon.$$

Hence proven. We will prove the above lemma in the next lecture.