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1 Introduction

At the beginning of the lecture, we briefly went over some upper and lower bounds on distortion for

embeddings of various distances into l1. Then, we discussed the setting for sublinear time algorithms,

one particular problem (distribution testing), and specific algorithms for distinguishing between uniform

and sufficiently non-uniform distributions.

2 Sublinear Time Algorithms

We’ve been concerned with situations where the size of the input is much too large to deal with using

conventional algorithms. We’ve considered streaming algorithms, where each part of the input is seen

once and the goal is to approximate an answer given space constraints. Now we’ll turn to truly sublinear

algorithms — only looking at a subset of the input. This might be necessary due to resource constraints

(like on a router where even simple operations take unacceptably long). The data itself might also come

as a sample, as in natural experiments or in the setting for machine learning where the training data is

assumed to be drawn from some unknown distribution.

Broadly, there are two types of sublinear algorithms: the “classic” type, which examine a subset of

the data and return an approximate output; and “property testing”, in which the goal is to verify whether

some object has a certain property. We’ll consider the problem of distribution testing.

3 Testing for Uniformity

It’s hard to precisely tell whether a distribution is uniform, but we can accept some approximation and

try to distinguish between uniform and “sufficiently non-uniform” distributions.

3.1 Total Variation

Suppose we treat (discrete) distributions over [n] as vectors of probabilities. Then we consider a distribu-

tion D “sufficiently non-uniform” if ‖D−Un‖1 ≥ ε. The l1 distance here is a proxy for the Total Variation

distance. Suppose we define our test as a subset T ⊂ [n]; if x ∈ T when sampling from one distribution

but not the other then we can distinguish the distributions. Then the total variation distance is defined

as

TV (A,B) = max
T⊂[n]

|PrA [x ∈ T ]− PrB [x ∈ T ]| (1)

Claim 1. TV (A,B) = 1
2‖A−B‖1
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3.2 First Attempt at an Algorithm

We could estimate the distribution D empirically, and then compute the distance ‖D̂ − U‖1. This is

not a very good algorithm. We need at least n/2 samples; otherwise at least half the coordinates are

guaranteed to be zero, resulting in an estimate that is far from uniform. The χ2 test in classical statistics

also requires Ω(n) samples.

3.3 Second Attempt

Algorithm 1 UNIFORM

Require: n,m, x1 . . . xn
C ← 0
for i = 0 to m do
for j = 0 to m do

if xi = xj then
C ← C + 1

end if
end for

end for
if C < am2

n then
return uniform

else
return nonuniform

end if

We can actually estimate uniformity using only Oε(
√
n) samples. The idea is to sample and count

the number of collisions: a nonuniform distribution will have more collisions. The amount of sampling

required is connected to the famous “birthday paradox” — in a uniform distribution, we would expect

collisions to start appearing at around
√
n samples.

3.3.1 Analysis

First, think about the l2 distance between distributions.

Claim 2. If D = Un then ‖D − Un‖2 = 0. But if ‖D − Un‖1 ≥ ε, then ‖D − Un‖2 > ε2

n .

Proof. The first part is obvious. For the second part, note that

‖x‖1 =
n∑
i=1

|xi| ≤

(
n∑
i=1

1

)1/2( n∑
i=1

x2i

)1/2

So ∀x : ‖x‖2 ≥ ‖x‖1√n .

Claim 3. ‖D − Un‖22 = ‖D‖22 − 1
n
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Proof. (The terms of D are denoted Pi, because they represent probabilities.)

‖D − Un‖22 = ‖D‖22 + ‖Un‖22 − 2D · Un

= ‖D‖22 +
n∑
k=1

(
1

n

)2

− 2
n∑
k=1

Pk
n

= ‖D‖22 +
1

n
− 2

n

n∑
k=1

Pk

= ‖D‖22 −
1

n

The upshot is that ‖D2‖22 = 1
n when uniform and ‖D2‖22 > 1

n + ε2

n when non-uniform, so we just need

to be able to distinguish these cases.

Lemma 4. 1
M ×C allows us to distiguish between the two cases above, as long as m = Ω(

√
n
ε4

). M is the

normalization constant M =
(
m
2

)
.

Proof. As before, we first show that the estimator is unbiased and then bound its variance. Define σij to

be the indicator variable of the event xi = xj . Also Z = 1
M

∑m
i=1

∑m
j=i+1 σij .

M · E[Z] = E

 n∑
i=1

n∑
j=i+1

σij


=

n∑
i=1

n∑
j=i+1

[σij ]

=

n∑
i=1

n∑
j=i+1

n∑
k=1

PkPk

=
n∑
i=1

n∑
j=i+1

‖D‖22

=

(
m

2

)
‖D‖22

The variance is a little trickier to bound than in the past. Essentially, we’ll break up a sum into 3

terms and bound each of them.

E
[
Z2
]

=
1

M2
E

∑
i1<j1

∑
i2<j2

σi1j1σi2j2


=

1

M2
E

 ∑
i1=i2<j1=j2

σ2i1j1 +
∑

|{i1,i2,j1,j2}|=3

σi1j1σi2j2 +
∑

{i1}∩{i2}∩{j1}∩{j2}=∅

σi1j1σi2j2


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Bringing the expectation operator inside, we can bound the first term:

E

∑
i<j

σ2ij

 = M‖D‖22

The second term:

2E

∑
i

∑
i<j1 6=j2

σij1σij2

 = 2
∑
i

∑
i<j1 6=j2

∑
k

PkPkPk

≤ 2m2‖D‖33 ≤ 2m3
(
‖D‖22

)3/2
In the third term, everything in the summand is independent, so

E

 ∑
{i1}∩{i2}∩{j1}∩{j2}=∅

σi1j1σi2j2

 ≤M2
(
‖D‖22

)
For convenience let d = ‖D‖22. The variance of Z is at most

1

M2

(
Md+ 2m3d3/2 +M2d2

)
− d2 ≤ d

M
+

8d3/2

m
≤ d

M
+

8d2

md1/2
≤ d

M
+

8d2
√
n

m

The lecture ended here.
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