
11

Lecture 4:

CountSketch

High Frequencies

COMS E6998-9 F15



Plan

• Scriber?

• Plan:

– CountMin/CountSketch (continuing from last 

time)

– High frequency moments via Precision 

Sampling

2



Part 1: CountMin/CountSketch

• Let 𝑓𝑖 be frequency of 𝑖

• Last lecture:

– 2nd moment:  𝑖 𝑓𝑖
2

• Tug of War 

– Max: heavy hitter

• CountMin

3

IP Frequency

1 3

2 2

3 0

4 9

5 0

… 0

𝑛 1



CountMin: overall

• Heavy hitters: 
 𝑓𝑖

 𝑓𝑗
≥ 𝜙

– If 
𝑓𝑖

 𝑓𝑗
≤ 𝜙 1 − 𝜖 , not 

reported

– If 
𝑓𝑖

 𝑓𝑗
≥ 𝜙 1 + 𝜖 , 

reported as heavy 

hitter

• Space: 𝑂
𝑙𝑜𝑔 𝑛

𝜖𝜙
cells

4

Algorithm CountMin:

Initialize(L, w):
array S[L][w]
L hash functions ℎ1 … ℎ𝐿, into {1,…w}

Process(int i):
for(j=0; j<L; j++)

S[j][ ℎ𝑗(𝑖) ] += 1;

Estimator:
foreach i in PossibleIP {

 𝑓𝑖 = 𝑚𝑖𝑛𝑗(S[j][ℎ𝑗 𝑖 ]);

}



Time

• Can improve time; space degrades to 𝑂
log2 𝑛

𝜖𝜙

• Idea: dyadic intervals
– Each level: one CountMin sketch on the virtual stream

– Find heavy hitters by following down the tree the heavy 
hitters

5

 

𝑖=1

𝑛

𝑓𝑖

 

𝑖=1

𝑛/2

𝑓𝑖
 

𝑖=
𝑛
2
+1

𝑛

𝑓𝑖

(virtual) stream 1,

with 1 element

[1,n]

(virtual) stream 2,

with 2 elements

[1,n/2], [n/2+1,n]

(virtual) stream 𝑗,
with 2𝑗 elements

[1,n/2^j], …

(real) stream log 𝑛,

with 𝑛 elements

1,2,…n

…

𝑓1 𝑓2 𝑓3 𝑓𝑖 𝑓𝑛
3

[3,4]

[1,n/2]

[1,n]



CountMin: linearity

• Is CountMin linear?

– CountMin(𝑓′ + 𝑓′′) from CountMin(𝑓′) and 

CountMin(𝑓′′) ?

– Just sum the two! 

• sum the 2 arrays, assuming we use the same hash 

function ℎ𝑗

• Used a lot in practice

https://sites.google.com/site/countminsketch

/

6

https://sites.google.com/site/countminsketch/


CountSketch

• How about 𝑓 = 𝑓′ − 𝑓′′ ?

– Or general streaming

– “Heavy hitter”: 

• if 𝑓𝑖 ≥ 𝜙  𝑗 𝑓𝑗 = 𝜙 ⋅ ||𝑓||1

– “min” is an issue

– But median is still ok

• Ideas to improve it further?

– Use Tug of War 𝑟 in each bucket => CountSketch

– Better in certain sense (cancelations in a cell)

7

Algorithm CountSketch:

Initialize(L, w):
array S[L][w]
L hash func’s ℎ1 … ℎ𝐿, into [w]
L hash func’s 𝑟1, … 𝑟𝐿, into {±1}

Process(int i, real 𝛿𝑖):
for(j=0; j<L; j++)

S[j][ ℎ𝑗(𝑖) ] += 𝑟𝑗 𝑖 ⋅ 𝛿𝑖;

Estimator:
foreach i in PossibleIP {

 𝑓𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(S[j][ℎ𝑗 𝑖 ]);

}



CountSketch⇒Compressed Sensing
• Sparse approximations:

– 𝑓 ∈ ℜ𝑛

– 𝑘-sparse approximation 𝑓∗:

• min ||𝑓∗ − 𝑓||
• Solution: 𝑓∗ = the 𝑘 heaviest elements of 𝑓

• Compressed Sensing:
[Candes-Romberg-Tao’04, Donoho’04]

– Want to acquire signal 𝑓
– Acquisition: linear measurements (sketch) 𝑆 𝑓 = 𝑆𝑓

– Goal: recover 𝑘-sparse approximation  𝑓 from 𝑆𝑓
– Error guarantee: 

|  𝑓 − 𝑓| ≤ min
𝑘−𝑠𝑝𝑎𝑟𝑠𝑒 𝑓∗

||𝑓∗ − 𝑓||

– Theorem: need only 𝑂(𝑘 ⋅ log 𝑛)–size sketch!

8



Signal Acquisition for CS

• Single pixel camera
[Takhar-Laska-Waskin-Duarte-Baron-Sarvotham-
Kelly-Baraniuk’06]

• One linear measurement = one row of 𝑆

• CountSketch: a version of Compr Sensing

– Set 𝜙 = 1/2𝑘

–  𝑓: take all the heavy hitters (or 𝑘 largest)

– Space: 𝑂(𝑘log 𝑛 )
9

source: http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/cscam-SPIEJan06.pdf



Back to Moments
• General moments:

– 𝑝𝑡ℎ moment:  𝑖 𝑓𝑖
𝑝

• normalized:  𝑖 𝑓𝑖
𝑝 1/𝑝

– 𝑝 = 2 :  𝑓𝑖
2

• 𝑂(log𝑛) via Tug of War (Lec. 3)

– 𝑝 = 0 : count # distinct!
• 𝑂(log𝑛) [Flajolet-Martin] from Lec. 2

– 𝑝 = 1:  |𝑓𝑖|
• 𝑂 log 𝑛 : will see later (for all 𝑝 ∈ (0,2))

– 𝑝 = ∞ (normalized): max
𝑖

𝑓𝑖

• Impossible to approximate, but can heavy hitters (Lec. 3)

– Remains: 2 < 𝑝 < ∞ ?

• Space: Θ 𝑛
1−

2

𝑝 log2 𝑛 ⇒ Precision Sampling (next) 

10

IP Frequency

1 3

2 2

3 0

4 9

5 0

… 0

𝑛 1



A task: estimate sum

• Given: 𝑛 quantities 𝑎1, 𝑎2, … 𝑎𝑛 in the range [0,1]
• Goal: estimate 𝑆 = 𝑎1 + 𝑎2 + ⋯𝑎𝑛 “cheaply”

• Standard sampling: pick random set 𝐽 = {𝑗1, … 𝑗𝑚} of size 𝑚

– Estimator:  𝑆 =
𝑛

𝑚
⋅ (𝑎𝑗1

+ 𝑎𝑗2
+ ⋯ 𝑎𝑗𝑚

)

• Chebyshev bound: with 90% success probability

𝑆 – 𝑂(𝑛/𝑚) <  𝑆 < 𝑆 + 𝑂(𝑛/𝑚)
• For constant additive error, need 𝑚 = Ω(𝑛)

a1 a2 a3 a4

a1
a3

Compute an estimate  𝑆 from 𝑎1, 𝑎3



Precision Sampling Framework

• Alternative “access” to 𝑎𝑖’s:
– For each term 𝑎𝑖, we get a (rough) estimate  𝑎𝑖

– up to some precision 𝑢𝑖, chosen in advance: 
|𝑎𝑖 –  𝑎𝑖| < 𝑢𝑖

• Challenge: achieve good trade-off between
– quality of approximation to 𝑆
– use only weak precisions 𝑢𝑖 (minimize “cost” of 

estimating  𝑎)

a1 a2 a3 a4

u1 u2 u3 u4

ã1 ã2
ã3 ã4

Compute an estimate  𝑆 from  𝑎1,  𝑎2,  𝑎3,  𝑎4



Formalization 

Sum Estimator Adversary

1. fix 𝑎1, 𝑎2, … 𝑎𝑛1. fix precisions 𝑢𝑖

2. fix  𝑎1,  𝑎2, …  𝑎𝑛 s.t. |𝑎𝑖 −  𝑎𝑖| < 𝑢𝑖

3. given  𝑎1,  𝑎2, …  𝑎𝑛, output  𝑆 s.t.

 𝑖 𝑎𝑖 − 𝛾  𝑆 < 1 (for 𝛾 ≈ 1)

• What is cost? 
– Here, average cost = 1/𝑛 ⋅  1/𝑢𝑖

– to achieve precision 𝑢𝑖, use 1/𝑢𝑖 “resources”: e.g., if 𝑎𝑖 is itself a 
sum 𝑎𝑖 =  𝑗𝑎𝑖𝑗 computed by subsampling, then one needs Θ(1/𝑢𝑖)
samples

• For example, can choose all 𝑢𝑖 = 1/𝑛
– Average cost ≈ 𝑛



Precision Sampling Lemma
• Goal: estimate 𝑆 =  𝑎𝑖 from {  𝑎𝑖} satisfying

|𝑎𝑖 −  𝑎𝑖| < 𝑢𝑖.

• Precision Sampling Lemma: can get, with 
90% success:
– O(1) additive error and 1.5 multiplicative error: 

𝑆/1.5 − 𝑂 1 <  𝑆 < 1.5 ⋅ 𝑆 + 𝑂(1)
– with average cost equal to 𝑂(log 𝑛)

• Example: distinguish Σ𝑎𝑖 = 3 vs Σ𝑎𝑖 = 0
– Consider two extreme cases:

• if three 𝑎𝑖 = 1: enough to have crude approx for all 
(𝑢𝑖 = 0.1)

• if all 𝑎𝑖 = 3/𝑛: only few with good approx 𝑢𝑖 = 1/𝑛, 
and the rest with 𝑢𝑖 = 1

14



Precision Sampling: Algorithm

• Precision Sampling Lemma: can get, with 
90% success:
– O(1) additive error and 1.5  multiplicative error: 

𝑆/1.5 − 𝑂 1 <  𝑆 < 1.5 ⋅ 𝑆 + 𝑂(1)

– with average cost equal to 𝑂(log 𝑛)

• Algorithm:
– Choose each 𝑢𝑖𝐸𝑥𝑝(1) i.i.d.

– Estimator:  𝑆 = max
𝑖

 𝑎𝑖/𝑢𝑖. 

• Proof of correctness:

– Claim 1: max𝑎𝑖/𝑢𝑖 ∼  𝑎𝑖/𝐸𝑥𝑝(1)

• Hence, max  𝑎𝑖/𝑢𝑖 =
 𝑎𝑖

𝐸𝑥𝑝 1
± 1

– Claim 2: Avg cost =𝑂(log𝑛)

15

𝐸𝑥𝑝(1) ∼ 𝑒−𝑥



𝑝-moments via Prec. Sampling
• Theorem: linear sketch for 𝑝-moment with 

𝑂(1) approximation, and 𝑂(𝑛1−2/𝑝 log𝑂(1) 𝑛)
space (with 90% success probability).

• Sketch:
– Pick random 𝑟𝑖{±1}, and 𝑢𝑖 ∼ 𝐸𝑥𝑝(1)

– let 𝑦𝑖 = 𝑓𝑖 ⋅ 𝑟𝑖/𝑢𝑖
1/𝑝

– Hash into a hash table 𝑆,

𝑤 = 𝑂(𝑛
1−

2

𝑝 log𝑂 1 𝑛) cells

• Estimator:

– max
𝑗

𝑆 𝑗 𝑝

• Linear

16

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

𝑦𝟏

+ 𝑦𝟑

𝑦𝟒 𝑦𝟐

+ 𝑦𝟓

+ 𝑦𝟔

𝑓 =

𝑆 =

𝑢 ∼ 𝑒−𝑢



Correctness of estimation
• Theorem:  max

𝑗
𝑆 𝑗 𝑝 is 𝑂(1)

approximation with 90% 
probability, with

𝑤 = 𝑂(𝑛1−2/𝑝 log𝑂 1 𝑛) cells

• Proof:
– Use Precision Sampling Lem.

– 𝑎𝑖 = 𝑓𝑖
𝑝

•  𝑎𝑖 =  𝑓𝑖
𝑝 = 𝐹𝑝

–  𝑎𝑖 = 𝑆 ℎ 𝑖 𝑝

– Need to show |𝑎𝑖 −  𝑎𝑖| small

• more precisely: 
 𝑎𝑖

𝑢𝑖
−

𝑎𝑖

𝑢𝑖
≤ 𝜖𝐹𝑝

17

Algorithm PrecisionSamplingFp:

Initialize(w):
array S[w]
hash func ℎ, into [w]
hash func 𝑟, into {±1}
reals 𝑢𝑖, from 𝐸𝑥𝑝 distribution

Process(vector 𝑓 ∈ ℜ𝑛):
for(i=0; i<n; i++)

S[ℎ(𝑖)] += 𝑓𝑖 ⋅
𝑟𝑖

𝑢𝑖
1/𝑝;

Estimator:
max

𝑗
𝑆 𝑗 𝑝



Correctness 2

• Claim: 𝑆 ℎ 𝑖 𝑝 − 𝑓𝑖
𝑝
/𝑢𝑖 ≤ 𝑂(𝜖𝐹𝑝)

• Consider cell 𝑧 = ℎ(𝑖)

– 𝑆 𝑧 =
𝑓𝑖

𝑢𝑖
1/𝑝 + 𝐶

• How much chaff 𝐶 is there?

– 𝐶 =  𝑗≠𝑖∗ 𝑦𝑗 ⋅  ℎ 𝑗 = 𝑧

– 𝐸 𝐶2 = ⋯ ≤ ||𝑦||2/𝑤
– What is ||𝑦||2 ? 

• 𝐸𝑢||𝑦||2 ≤ ||𝑓||2 ⋅ 𝐸
1

𝑢2/𝑝 = ||𝑓||2 ⋅ 𝑂 log 𝑛

– ||𝑓||2 ≤ 𝑛1−2/𝑝||𝑓||𝑝
2

– By Markov’s: 𝐶2 ≤ ||𝑓||𝑝
2 ⋅ 𝑛1−2/𝑝 ⋅ 𝑂(log 𝑛)/𝑤 with probability >90%

• Set 𝑤 =
1

𝜖2/𝑝 𝑛1−2/𝑝 ⋅ 𝑂(log 𝑛), then

– 𝐶 𝑝 ≤ ||𝑓||𝑝
𝑝

⋅ 𝜖 = 𝜖𝐹𝑝

18

𝑦𝑖 = 𝑓𝑖 ⋅ 𝑟𝑖/𝑢𝑖
1/𝑝

where 𝑟𝑖{±1}
𝑢𝑖 exponential r.v.

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

𝑦𝟏

+ 𝑦𝟑

𝑦𝟒 𝑦𝟐

+ 𝑦𝟓

+ 𝑦𝟔

𝑆 =



Correctness (final)

• Claim: 𝑆 ℎ 𝑖 𝑝 − 𝑓𝑖
𝑝
/𝑢𝑖 ≤ 𝑂(𝜖𝐹𝑝)

• 𝑆 ℎ 𝑖 𝑝 =
𝑓𝑖

𝑢
𝑖
1/𝑝 + 𝐶

𝑝

– where 𝐶 =  𝑗≠𝑖∗ 𝑦𝑗 ⋅  ℎ 𝑗 = ℎ(𝑖)

• Proved:

– 𝐸 𝐶2 ≤ ||𝑦||2/𝑤
– this implies 𝐶𝑝 ≤ 𝜖𝐹𝑝 with 90% for fixed 𝑖

– But need for all 𝑖 !

• Want: 𝐶2 ≤ 𝛽||𝑦||2/𝑤 with high probability 
for some smallish 𝛽
– Can indeed prove for 𝛽 = 𝑂(log2 𝑛) with strong 

concentration inequality (Bernstein).

19



Recap

• CountSketch:

– Linear sketch for general streaming

• 𝑝-moment for 𝑝 > 2

– Via Precision Sampling

• Estimate of sum from poor estimates

– Sketch: Exp variables + CountSketch

20


