COMS E6998-9 F15

Lecture 4:
CountSketch
High Frequencies
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e Scriber?

* Plan:

— CountMin/CountSketch (continuing from last
time)

— High frequency moments via Precision
Sampling
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* Let f; be frequency of i

I T

1 3

« Last lecture: 2 2

3 0

— 2" moment: Y, f 4 9

* Tug of War 5 0

— Max: heavy hitter -

n 1

e CountMin
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fi

 Heavy hitters:
y >f;

= ¢

|f >r < ¢(1-—¢€), not

j
reported

—If f}; > (1 +€),

J
reported as heavy

hitter
» Space: O (log

€
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n) cells

Algorithm CountMin:

Initialize(L, w):
array S[L][w]

L hash functions h;..h;, into {1,..w}

Process(int i):
for(j=0; j<L; j++)

S[IIL (@) ] += 1

Estimator:

J

foreach i in PossibleIP {

fi = min;(S[31ID]1);

}




2
- Can improve time; space degrades to O (IO§¢ n)

* |dea: dyadic intervals
— Each level: one CountMin sketch on the virtual stream

— Find heavy hitters by following down the tree the heavy
hitters

(virtual) stream 1,
with 1 element

[1.n]

(virtual) stream 2,

with 2 elements

[1,n/2], [n/2+1,n]

(virtual) stream j,

with 2/ elements

[1,n/27], ...

1111

‘¥ i/ ‘ ‘ (real) stream logn,

/> f3 fi fa with n elements
1,2,...n
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e |s CountMin linear?

— CountMin(f’ + f"") from CountMin(f’) and
CountMin(f"’) ?

— Just sum the two!

« sum the 2 arrays, assuming we use the same hash
function h;

« Used a lot in practice
https://sites.google.com/site/countminsketch

/
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https://sites.google.com/site/countminsketch/

Sketch

« How about f =f'—f"?
— Or general streaming
— “Heavy hitter”:
i1l = o XA = ¢ - 1If 1l
— “min” is an issue
— But median is still ok

Algorithm CountSketch:

Initialize(L, w):
array S[L][w]
L hash func’s h;..h;, into [w]
L hash func’s ry,..1;, into {£1}

Process(int i, real §;):
for(j=0; j<L; j++)
S[FIL hi@®) 1 += (D - 6&;;

Estimator:
foreach i in PossibleIP {
fi = median;(S[31[h;(D]);
}

 |deas to improve it further?
— Use Tug of War r in each bucket => CountSketch
— Better in certain sense (cancelations in a cell)
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Compressed Sensing

« Sparse approximations:
— feR”
— k-sparse approximation f*:
* min||f* — f]]

 Solution: f* = the k heaviest elements of f

« Compressed Sensing:
[Candes-Romberg-Tao’04, Donoho’04]
— Want to acquire signal f
— Acquisition: linear measurements (sketch) S(f) = Sf
— Goal: recover k-sparse approximation f from Sf
— Error guarantee:
If = fll < _min__|If*=fl|

k—sparse f*

— Theorem: need only O(k - logn)-size sketch!
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* Single pixel camera

[ Takhar-Laska-Waskin-Duarte-Baron-Sarvotham-
Kelly-Baraniuk’06]

e One linear measurement = one row of S

* CountSketch: a version of Compr Sensing
— Set o =1/2k
— f: take all the heavy hitters (or k largest)
— Space: O(klogn)
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e General moments:

— pth moment: Ziﬁp _

1/p

- normalized: (3}; ")
-p=2:3f

e O(logn) via Tug of War (Lec. 3)
— p = 0 : count # distinct!

* O(logn) [Flajolet-Martin] from Lec. 2

—-p =1 Xlfil n
* O(logn) : will see later (for all p € (0,2))
— p = oo (normalized): maxf;
 Impossible to approxima:te, but can heavy hitters (Lec. 3)
— Remains: 2 <p < ?

2

- Space: 0 (n1_5 log? n) = Precision Sampling (next)

o ~r WO N -
R O O O O NN W
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« Given: n quantities a4, a,, ...a, in the range [0,1]
* Goal: estimate S =a;+a,+ :--a,, “cheaply”

« Standard sampling: pick random set J = {j,, ...j,,} of size m
— Estimator: § = - (a;, + a;, + - a;,)
* Chebyshev bound: with 90% success probability
S-0(n/m) <S§ < S + 0(n/m)
* For constant additive error, need m = Q(n)

N

Compute an estimate § Jfrom a,, a;
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Alternative “access” to a;’s:

— For each term a;, we get a (rough) estimate @;

— up to some precision u;, chosen in advance:
la; -a;| < u,

Challenge: achieve good trade-off between

— quality of approximation to S

— use only weak preCISlons u; (minimize “cost” of
estimating a) J

Compute-an estlyn;;\te S from ay, ay, as, a,

o // A

| 1 = IE
The Fu l‘ound"mon S hool of Engineering and Applied Sc1 enc



Sum Estimator i% Adversary ‘f\ ‘MM’H *}‘LJWHW 'TW\Y"
%ﬁf‘_—w' ’w | \ M l| n |
1. fix precisions u; 1. fix ay, a,, ...ay |

2. fix &1,(12, dn S.1. |(1i — dll < Uu;
3. given dy, d,, ... d,, output S s.t.
I¥;a; —yS| < 1 (fory = 1)

* What is cost?
— Here, average cost = 1/n-), 1/u,

— to achieve precision u;, use 1/u; “resources”: e.g., if a, is itself a
sum a; = Y;a; computed by subsampling, then one needs 0(1/u;)
samples

« For example, can choose all u; = 1/n
— Average cost = n
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* Goal: estimate S = Y a; from {a;} satisfying
|Cli — c“il| < Uj.

°| Precision Sampling Lemma: can get, wit

90% success:

— O(1) additive error and 1.5 multiplicative error:

S/1.5—0(1)<S8S<15-S+0(1)
— with average cost equal to O(logn)

« Example: distinguish Xa; = 3 vs Za; = 0
— Consider two extreme cases:

* if three a, = 1: enough to have crude approx for all
(u; =0.1)

« if all a; = 3/n: only few with good approx u;, = 1/n,
and the rest with u, =1
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* Precision Sampling Lemma: can get, with

90% success:

— O(1) additive error and 1.5 multiplicative error:

S/15-0(1) <5< 15-5S+0(1) —x
— with average cost equal to O(logn) e Exp(1). e/\_o_5 ]
* Algorithm: 12 s
— Choose each u;eExp(1) i.i.d. 50.'8\
— Estimator: S = max d;/u;. |
* Proof of correctness: oo} \ :
— Claim 1: maxa;/u; ~ Y.a;/Exp(1)
° v . . — Zai
Hence, max d;/u; = o

— Claim 2: Avg cost =0(logn)
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* Theorem: linear sketch for p-moment with
0(1) approximation, and 0(n'=2/? 1og®™ n)
space (with 90% success probability).

» Sketch: u~e™
— Pick random r;e{%+1}, and u; ~ Exp(1)

-lety, = f;-ni/w;”
— Hash into a hash table §,

2
w=0n 7log?® n) cells

. Estimator: r <[ e N R e

- maxisylP NS
* Linear
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» Theorem: max|S[j]|? is O(1)
approximaticj)n with 90%
probability, with
w = 0(nr2/P 1ogoM n) cells

* Proof:

— Use Precision Sampling Lem.
—a; = |fi|P
* Ya; =2lfilP = F,
— a; = |S[h(D]IP
— Need to show |a; — d;| small

. a; a;
* more precisely: ‘u—‘ — u—‘ < €F,
l l
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Algorithm PrecisionSamplingFp:

Initialize (w) :
array S[w]
hash func h, into [w]
hash func r, into {£1}
reals u;, from Exp distribution

Process(vector f € R™):
for(i=0; i<n; i++)
S[RD] += fi 375

U;

Estimator:
max|S(j)|P
j




» Claim: [S[R(D]P — fP/u;| < O(eF,)
» Consider cell z = h(i)

fi
- Slz] = o7 +C
. i ? 1
How much chaff C 1§ there? i = fi-1i/u /p
= € =Xy xlh() = 7] where r;e{+1)}
- E[C?] = < |lylI*/w u; exponential r.v.
— What is ||y]|? ?

.
© EYIZ < 1IA1P-E [55] = 1If112 - 0Cogn)

— |IfII> < n'=2/7]|f3
— By Markov’s: €% < ||f]|3|- n'~%/P - 0(logn)/w| with probability >90%
1 4
¢ Setw = mnl 2/v . 0(logn), then
— [CIP < |IfIlp - € = €F,
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Claim: |S[R(D]? — [ /w;| < O(€F,)
p
S[h(D)]P = (u{;p + c)

—where C =Y.+ y; - x[h() = h(D)]

Proved:

- E[C?] < |IylI*/w

— this implies CP < eF, with 90% for fixed i

— But need for all i !

Want: C? < B||y||?/w with high probability
for some smallish 8

— Can indeed prove for f = 0(log? n) with strong
concentration inequality (Bernstein).
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* CountSketch:
— Linear sketch for general streaming

* p-moment for p > 2
— Via Precision Sampling
« Estimate of sum from poor estimates
— Sketch: Exp variables + CountSketch
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