Lecture 8:

Dimension Reduction

Plan

- Pick up PS1 at the end of the class
- PS2 out

- Dimension Reduction
- Fast Dimension Reduction

Scriber?

High-dimensional case

Exact algorithms degrade rapidly with the dimension d

Algorithm	Query time	Space
Full indexing	$O(\log n \cdot d)$	$n^{O(d)}$ (Voronoi diagram size)
No indexing – linear scan	$O(n \cdot d)$	$O(n \cdot d)$

Dimension Reduction

- Reduce high dimension?!
 - "flatten" dimension d into dimension $k \ll d$
- Not possible in general: packing bound
- But can if: for a fixed subset of \Re^d

Johnson-Lindenstrauss Lemma

- [JL84]: There is a randomized linear map $F: \ell_2^d \to \ell_2^k$, $k \ll d$, that preserves distance between two vectors x, y
 - up to $1 + \epsilon$ factor: $||x - y|| \le ||F(x) - F(y)|| \le (1 + \epsilon) \cdot ||x - y||$
 - with $1 e^{-C\epsilon^2 k}$ probability (C some constant)
- Preserves distances between n points for $k=O\left(\frac{\log n}{\epsilon^2}\right)$ with probability at least 1-1/n

Dim-Reduction for NNS

- [JL84]: There is a randomized linear map $F: \ell_2^d \to \ell_2^k$, $k \ll d$, that preserves distance between two vectors x, y
 - up to $1 + \epsilon$ factor: $||x - y|| \le ||F(x) - F(y)|| \le (1 + \epsilon) \cdot ||x - y||$
 - with $1 e^{-C\epsilon^2 k}$ probability (C some constant)
- Application: NNS in ℓ_2^a
 - Trivial scan: $O(n \cdot d)$ query time
 - Reduce to $O(n \cdot k) + T_{dim-red}$ time after using dimension reduction
 - where $T_{dim-red}$ time to reduce dimension of the query point
 - Important that F is oblivious!
- Have we seen something similar to JL84 in class?

Idea:

- Project onto a random subspace of dimension k!
- In general, F linear:

$$-F(x) - F(y) = F(x - y)$$

- Ok to prove that for z = x y
- $-F(z) \approx ||z||$

1D embedding

- Map $f: \ell_2^d \to \Re$
 - $-f(x) = \sum_{i} g_{i} \cdot x_{i} ,$
 - where g_i are iid normal (Gaussian) ran

- Why Gaussian?
 - Stability property: $\sum_i g_i \cdot x_i$ is distributed as $||x|| \cdot g$, where g is also Gaussian
 - Proof: $\langle g_1, ..., g_d \rangle$ is centrally distributed, i.e., has random direction, and projection on random direction depends only on length of x
 - Hence, enough to consider $x = e_1$

$$P(a) \cdot P(b) =$$

$$= \frac{1}{\sqrt{2\pi}} e^{-a^2/2} \frac{1}{\sqrt{2\pi}} e^{-b^2/2}$$

$$= \frac{1}{2\pi} e^{-(a^2+b^2)/2}$$

1D embedding

- Map $f(x) = \sum_i g_i \cdot x_i$,
 - for any x, $f(x) \sim ||x|| \cdot g$
 - Linear
- Want: $|f(x)| \approx ||x||$
- Claim: for any $x \in \mathbb{R}^d$, we have
 - Expectation: $E[|f(x)|^2] = ||x||^2$
 - Standard deviation:
 - $\sigma[|(f(x)|^2] = O(||x||^2)$
- Proof:

- Expectation =
$$E[(f(x))^2] = E[||x||^2 \cdot g^2]$$

= $||x||^2$

Full dimension reduction

Just repeat the 1D embedding k times

$$-F(x) = (g_1 \cdot x, g_2 \cdot x, \dots g_k \cdot x) / \sqrt{k} = \frac{1}{\sqrt{k}} Gx$$

– where G is a $k \times d$ random Gaussian matrix

Again, want to prove that

$$-F(z) = (1 \pm \epsilon) \cdot ||z||$$

- For fixed z
- With probability $1 e^{-\Omega(\epsilon^2 k)}$

Concentration

- F(z) is distributed as
 - $-\frac{1}{\sqrt{k}}(||z|| \cdot a_1, ||z|| \cdot a_2, ... ||z|| \cdot a_k)$
 - where each a_i is distributed as Gaussian
- Norm $||F(z)||^2 = ||z||^2 \cdot \frac{1}{k} \sum_i a_i^2$
 - $-\sum_i a_i^2$ is called chi-squared distribution with k degrees
- Fact: chi-squared very well concentrated:
 - Equal to $1 + \epsilon$ with probability $1 e^{-\Omega(\epsilon^2 k)}$
 - Akin to central limit theorem

Johnson Lindenstrauss: wrap-up

•
$$F(x) = (g_1 \cdot x, g_2 \cdot x, \dots g_k \cdot x) / \sqrt{k} = \frac{1}{\sqrt{k}} Gx$$

• $||F(x)|| = (1 \pm \epsilon)||x||$ with high probability

- Contrast to Tug-Of-War:
 - $-F(x) = \frac{1}{\sqrt{k}}Rx$ for R contained of ± 1
 - Only proved 90% probability
 - Would apply median to get high probability
 - Can also prove high probability [Achlioptas'01]
 - Gaussians have geometric interpretation

Dimension Reduction for ℓ_1

- Dimension reduction?
 - Essentially no [CS'02, BC'03, LN'04, JN'10...]
 - For n points, D approximation: between $n^{\Omega(1/D^2)}$ and O(n/D) [BC03, NR10, ANN10...]
 - even if map depends on the dataset!
 - In contrast: [JL] gives $O(\epsilon^{-2} \log n)$, and doesn't depend on the dataset
 - No distributional dimension reduction either

– But can sketch!

Sketch

- Can we do the "analog" of Euclidean projections?
- For ℓ_2 , we used: Gaussian distribution
 - has stability property:
 - $-g_1z_1+g_2z_2+\cdots g_dz_d$ is distributed as $g\cdot ||z||$
- Is there something similar for 1-norm?
 - Yes: Cauchy distribution!
 - 1-stable:

$$pdf(s) = \frac{1}{\pi(s^2 + 1)}$$

- $-c_1z_1+c_2z_2+\cdots c_dz_d$ is distributed as $c\cdot ||z||_1$
- What's wrong then?
 - Cauchy are heavy-tailed...
 - doesn't even have finite expectatio^{2/6} o.3

Sketching for ℓ_1 [Indyk'00]

- Still, can consider map as before
 - $-S(x) = (C_1 x, C_2 x, ..., C_k x) = Cx$
- Consider S(x) S(y) = Cx Cy = C(x y) = Cz
 - where z = x y
 - each coordinate distributed as $||z||_1 \times Cauchy$
 - Take 1-norm $||Cz||_1$?
 - does not have finite expectation, but...
- Can estimate $||z||_1$ by:
 - Median of absolute values of coordinates of Cz!
- Correctness claim: for each i
 - $-\Pr[|C_i z| > ||z||_1 \cdot (1 \epsilon)] > 1/2 + \Omega(\epsilon)$
 - $-\Pr[|C_i z| < ||z||_1 \cdot (1 + \epsilon)] > 1/2 + \Omega(\epsilon)$

Estimator for ℓ_1

- Estimator: median($|C_1z|$, $|C_2z|$, ... $|C_kz|$)
- Correctness claim: for each i

$$-\Pr[|C_i z| > ||z||_1 \cdot (1 - \epsilon)] > 1/2 + \Omega(\epsilon)$$

$$-\Pr[|C_i z| < ||z||_1 \cdot (1 + \epsilon)] > 1/2 + \Omega(\epsilon)$$

Proof:

- $-|C_i z| = abs(C_i z)$ is distributed as $abs(||z||_1 c) = ||z||_1 \cdot |c|$
- Need to verify that
 - $\Pr[|c| > (1 \epsilon)] > 1/2 + \Omega(\epsilon)$
 - $\Pr[|c| < (1 + \epsilon)] > 1/2 + \Omega(\epsilon)$

Estimator for ℓ_1

- Estimator: median($|C_1z|, |C_2z|, ... |C_kz|$)
- $L_i = {}_{1}\text{Correctness claim: for each } i$

if holds—
$$\Pr[C_i z| > ||z||_1 \cdot (1 - \epsilon)] > 1/2 + \Omega(\epsilon)$$

$$\begin{array}{l} U_i = 1 \\ \text{if holds} \end{array} - \Pr\{|C_i z| < ||z||_1 \cdot (1+\epsilon)\} > 1/2 + \Omega(\epsilon) \\ \bullet \quad \text{Take } k = O(1/\epsilon^2) \end{aligned}$$

- - $-E[L_i] \ge 1/2 + \Omega(\epsilon)$
 - Hence $\Pr\left[\sum_{i} L_{i} \leq \frac{k}{2}\right] < 0.05$ (by Chebyshev)
 - Similarly with U_i
- The above means that
 - $\text{ median}(|C_1 z|, |C_2 z|, ... |C_k z|) \in (1 \pm \epsilon)||z||_1$ with probability at least 0.90

PS₁

- Avg: 65.4
- Standard deviation: 20.5
- Max: 96

- By problems (average % points):
 - 1: 0.83
 - 2: 0.62
 - 3: 0.44