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Lecture 8:

Dimension Reduction



Plan

• Pick up PS1 at the end of the class

• PS2 out

• Dimension Reduction

• Fast Dimension Reduction

• Scriber?
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High-dimensional case

• Exact algorithms degrade rapidly with the 

dimension 𝑑

Algorithm Query time Space

Full indexing 𝑂(log 𝑛 ⋅ 𝑑) 𝑛𝑂(𝑑) (Voronoi diagram size)

No indexing –

linear scan

𝑂(𝑛 ⋅ 𝑑) 𝑂(𝑛 ⋅ 𝑑)



Dimension Reduction

• Reduce high dimension?!

– “flatten” dimension 𝑑 into dimension 𝑘 ≪ 𝑑

• Not possible in general: packing bound

• But can if: for a fixed subset of ℜ𝑑



Johnson-Lindenstrauss Lemma
• [JL84]: There is a randomized linear map 𝐹: ℓ2

𝑑 →
ℓ2
𝑘, 𝑘 ≪ 𝑑, that preserves distance between two 

vectors 𝑥, 𝑦
– up to 1 + 𝜖 factor: 

||𝑥 − 𝑦|| ≤ ||𝐹 𝑥 − 𝐹 𝑦 || ≤ 1 + 𝜖 ⋅ ||𝑥 − 𝑦||

– with 1 − 𝑒−𝐶𝜖
2𝑘 probability (𝐶 some constant)

• Preserves distances between 𝑛 points for 𝑘 =
𝑂

log 𝑛

𝜖2
with probability at least 1 − 1/𝑛
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Dim-Reduction for NNS
• [JL84]: There is a randomized linear map 𝐹: ℓ2

𝑑 →
ℓ2
𝑘, 𝑘 ≪ 𝑑, that preserves distance between two 

vectors 𝑥, 𝑦
– up to 1 + 𝜖 factor: 

||𝑥 − 𝑦|| ≤ ||𝐹 𝑥 − 𝐹 𝑦 || ≤ 1 + 𝜖 ⋅ ||𝑥 − 𝑦||

– with 1 − 𝑒−𝐶𝜖
2𝑘 probability (𝐶 some constant)

• Application: NNS in ℓ2
𝑑

– Trivial scan: 𝑂(𝑛 ⋅ 𝑑) query time

– Reduce to 𝑂(𝑛 ⋅ 𝑘) + 𝑇𝑑𝑖𝑚−𝑟𝑒𝑑 time after using 
dimension reduction

– where 𝑇𝑑𝑖𝑚−𝑟𝑒𝑑 time to reduce dimension of the 
query point

– Important that 𝐹 is oblivious !

• Have we seen something similar to JL84 in class?
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Idea:

• Project onto a random subspace of 
dimension 𝑘!

• In general, 𝐹 linear:

– 𝐹(𝑥) − 𝐹(𝑦) = 𝐹(𝑥 − 𝑦)

– Ok to prove that for 𝑧 = 𝑥 − 𝑦

– 𝐹 𝑧 ≈ ||𝑧||



1D embedding
• Map 𝑓: ℓ2

𝑑
– 𝑓 𝑥 = ∑𝑖 𝑔𝑖 ⋅ 𝑥𝑖 , 

• where 𝑔𝑖 are iid normal (Gaussian) random variable

• Why Gaussian?
– Stability property: ∑𝑖 𝑔𝑖 ⋅ 𝑥𝑖 is distributed as | 𝑥| ⋅ 𝑔, 

where 𝑔 is also Gaussian

– Proof: 〈𝑔1, … , 𝑔𝑑〉 is centrally distributed, i.e., has 
random direction, and projection on random 
direction depends only on length of 𝑥

– Hence, enough to consider 𝑥 = 𝑒1
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1D embedding
• Map 𝑓 𝑥 = ∑𝑖 𝑔𝑖 ⋅ 𝑥𝑖 , 

– for any 𝑥, 𝑓 𝑥 ~ ||𝑥|| ⋅ 𝑔
– Linear

• Want: |𝑓(𝑥)| ≈ ‖𝑥‖
• Claim: for any 𝑥ℜ𝑑, we have 

– Expectation:  𝑓 𝑥 2 = 𝑥 2

– Standard deviation:  

• [|(𝑓(𝑥)|2] = 𝑂( 𝑥 2)

• Proof:

– Expectation =  𝑓 𝑥
2
=  𝑥 2 ⋅ 𝑔2

= 𝑥 2
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Full dimension reduction

• Just repeat the 1D embedding 𝑘 times

– 𝐹(𝑥) = 𝑔1 ⋅ 𝑥, 𝑔2 ⋅ 𝑥, …𝑔𝑘 ⋅ 𝑥 / 𝑘 =
1

𝑘
𝐺𝑥

– where 𝐺 is a 𝑘 × 𝑑 random Gaussian matrix

• Again, want to prove that 

– 𝐹 𝑧 = 1 ± 𝜖 ⋅ ||𝑧||

– For fixed 𝑧

– With probability 1 − 𝑒−Ω 𝜖2𝑘
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Concentration

• 𝐹(𝑧) is distributed as 

–
1

𝑘
||𝑧|| ⋅ 𝑎1, ||𝑧|| ⋅ 𝑎2, … ||𝑧|| ⋅ 𝑎𝑘

– where each 𝑎𝑖 is distributed as Gaussian

• Norm ||𝐹(𝑧)||2 = ||𝑧||2 ⋅
1

𝑘
∑𝑖 𝑎𝑖

2

– ∑𝑖 𝑎𝑖
2 is called chi-squared distribution with 𝑘

degrees

• Fact: chi-squared very well concentrated: 

– Equal to 1 + 𝜖 with probability 1 − 𝑒−Ω(𝜖
2𝑘)

– Akin to central limit theorem



Johnson Lindenstrauss: wrap-up

• 𝐹(𝑥) = (𝑔1 ⋅ 𝑥, 𝑔2 ⋅ 𝑥, …𝑔𝑘 ⋅ 𝑥) / 𝑘 =
1

𝑘
𝐺𝑥

• ||𝐹(𝑥)|| = 1 ± 𝜖 ||𝑥|| with high probability

• Contrast to Tug-Of-War:

– 𝐹 𝑥 =
1

𝑘
𝑅𝑥 for 𝑅 contained of ±1

• Only proved 90% probability

• Would apply median to get high probability

– Can also prove high probability [Achlioptas’01]

– Gaussians have geometric interpretation



Dimension Reduction for ℓ1

• Dimension reduction?

– Essentially no [CS’02, BC’03, LN’04, JN’10…]

– For 𝑛 points, 𝐷 approximation: between 

𝑛Ω 1/𝐷2
and 𝑂(𝑛/𝐷) [BC03, NR10, ANN10…] 

• even if map depends on the dataset!

– In contrast: [JL] gives 𝑂(𝜖−2 log 𝑛), and 

doesn’t depend on the dataset

– No distributional dimension reduction either

– But can sketch!



Sketch

• Can we do the “analog” of Euclidean 
projections?

• For ℓ2, we used: Gaussian distribution
– has stability property:

– 𝑔1𝑧1 + 𝑔2𝑧2 +⋯𝑔𝑑𝑧𝑑 is distributed as 𝑔 ⋅ ||𝑧||

• Is there something similar for 1-norm?
– Yes: Cauchy distribution!

– 1-stable:

– 𝑐1𝑧1 + 𝑐2𝑧2 +⋯𝑐𝑑𝑧𝑑 is distributed as 𝑐 ⋅ ||𝑧||1
• What’s wrong then?

– Cauchy are heavy-tailed…

– doesn’t even have finite expectation (of abs)

𝑝𝑑𝑓 𝑠 =
1

𝜋(𝑠2 + 1)



Sketching for ℓ1 [Indyk’00]
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• Still, can consider map as before

– 𝑆 𝑥 = 𝐶1𝑥, 𝐶2𝑥,… , 𝐶𝑘𝑥 = 𝑪𝑥

• Consider 𝑆 𝑥 − 𝑆 𝑦 = 𝑪𝑥 − 𝑪𝑦 = 𝑪 𝑥 − 𝑦 = 𝑪𝑧
– where 𝑧 = 𝑥 − 𝑦

– each coordinate distributed as ||𝑧||1 ×Cauchy

– Take 1-norm ||𝑪𝑧||1 ?
• does not have finite expectation, but…

• Can estimate ||𝑧||1 by:

– Median of absolute values of coordinates of 𝑪𝑧 !

• Correctness claim: for each 𝑖

– Pr 𝐶𝑖𝑧 > ||𝑧||1 ⋅ (1 − 𝜖) > 1/2 + Ω(𝜖)

– Pr 𝐶𝑖𝑧 < ||𝑧||1 ⋅ (1 + 𝜖) > 1/2 + Ω(𝜖)



Estimator for ℓ1
• Estimator: median 𝐶1𝑧 , 𝐶2𝑧 ,… 𝐶𝑘𝑧

• Correctness claim: for each 𝑖

– Pr 𝐶𝑖𝑧 > ||𝑧||1 ⋅ (1 − 𝜖) > 1/2 + Ω(𝜖)

– Pr 𝐶𝑖𝑧 < ||𝑧||1 ⋅ (1 + 𝜖) > 1/2 + Ω(𝜖)

• Proof:

– 𝐶𝑖𝑧 = 𝑎𝑏𝑠(𝐶𝑖𝑧) is distributed as 

abs ||𝑧||1𝑐 = ||𝑧||1 ⋅ |𝑐|

– Need to verify that 

• Pr 𝑐 > 1 − 𝜖 > 1/2 + Ω 𝜖

• Pr 𝑐 < 1 + 𝜖 > 1/2 + Ω 𝜖



Estimator for ℓ1
• Estimator: median 𝐶1𝑧 , 𝐶2𝑧 ,… 𝐶𝑘𝑧
• Correctness claim: for each 𝑖

– Pr 𝐶𝑖𝑧 > ||𝑧||1 ⋅ (1 − 𝜖) > 1/2 + Ω(𝜖)

– Pr 𝐶𝑖𝑧 < ||𝑧||1 ⋅ (1 + 𝜖) > 1/2 + Ω(𝜖)

• Take 𝑘 = 𝑂 1/𝜖2

– 𝐸 𝐿𝑖 ≥ 1/2 + Ω 𝜖

– Hence Pr ∑𝑖 𝐿𝑖 ≤
𝑘

2
< 0.05 (by Chebyshev)

– Similarly with 𝑈𝑖
• The above means that

– median 𝐶1𝑧 , 𝐶2𝑧 , … 𝐶𝑘𝑧 ∈ 1 ± 𝜖 ||𝑧||1
with probability at least 0.90
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𝐿𝑖 = 1
if holds
𝑈𝑖 = 1
if holds



PS1

• Avg: 65.4

• Standard deviation: 20.5

• Max: 96

• By problems (average % points):

1: 0.83

2: 0.62

3: 0.44
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