COMS E6998-9 F15

Lecture 22:
Linearity Testing
Sparse Fourier Transform

COLUMBIA ENGINEERING

The Fu Foundation School of Engineering and Applied Science

* Thu: no class. Happy Thanksgiving!

* Tue, Dec 1st:

— Sergei Vassilvitskii (Google Research) on
MapReduce model and algorithms

* I’m away until next Thu, Dec 3rd
— Office hours: Tue 2:30-4:30, Wed 4-6pm

 Plan:
— Linearity Testing (finish)
— Sparse Fourier Transform

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

* Linearity Testing:
— f:{—1,+1}" is linear iff for any x,y €
{—1,+1}", we have:
*f) - fO)=fxDy)
» Test: repeat 0(1/¢) times
— Pick random x, y
— Verify that f(x) - f(y) = f(x D y)
* Main Theorem:
—If f is e-far from linearity, then
Pr[test fails] > €

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

 Remaining Lemma:
—Let T, = 1iff f(x) - f(¥) = f(x D y)

1

- 1 A
— Pr[Txy — 1 = E + EZSQ[TL] f53

—Where fs = (f, xs) for xs(x) = [T;es x:

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

. i = Ljemy K@,
 Consider w = e 2™M/n (nth oot of unity)
—fi[n] >R Xi = Ljefm % @Y
» also special case of more general setting:

* fi[n]¢ >R
* Will call such function: x = (x4, ... x;;)

 Fourier transform:

n&Jj€en] 4

—where w = e~2™/" js the n" root of unity
_ NPT

—Xi = Ljen) ¥ 0

— Assume: n is power of 2

— % =

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

12 x.w_ij
* Imagin e
ging w = e 2™M/n (nth oot of unity)
— MRI, NMR xi = Y icr & @Y

5C\i=

« Compression:

— JPEG: retain only high Fourier coefficients
FAmplitude

 Signal processing 12’ |] |
« Data analysis .

. o000 0-
60— -5¢
. 40 10 ‘ ‘ Time (s)
EE:ML 0 0.1 0.2 0.3 0.4 §
-0 -
g M ~ap-] 5IAmplitude x
60 4 Explicit Integration
:_| 3 | e |

-B0 = T
B -

¥10

T T I
u] o 0.7 0.8 0.9
aet
— Sampled Sourd Cula
w —— FFT Mapni bud=
0 -d T ".HEU*‘ I

T T i
i) 1000 Z200g 00g 4000

Hz
Frequency (Hz)
LUMBIA |[ENGINEERIN) — e bl A UL
gech Fogdation SchoolofEngilSring and Applied Scieg 10 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

~ 1 i
%= Djem o,
° Na'l\/ely: w = e~ M/ (nt_’f root of unity)
Xi = D icin Xi @Y
_ O(nZ) i j€[n] Y

* Fast Fourier Transform:
— O(nlogn) time
— [Cooley-Tukey 1964]
— [Gauss 1805]
* One of the biggest open questions in CS:
— Can we do in O(n) time?

COLUMBIA |[ENGINEERING ,

The Fu Foundation School of Engineering and Applied Science

1 —if
~Djem %@,

w = e 2™M/n (nth oot of unity)
Xi = Ljem % @7

5C\l' -
« Many signals represented

well by sparse Fourier transform

« |f X is sparse,
— Can we do better?

* YES!

— 0(k - log?n) time possible, assuming k non-zero Fourier
coefficients!

— Sublinear time: just sample a few positions in x
« Even when X is approximately sparse

COLUME RERERERRE |

The Fu Foundation !

1 g o
I =]
X; nZ]E[n] xjw~Y,

* Sparse Fourier Transform | o = e=2m/" (n" root of unity)

) Xi = X e £ 07
— Sparse: £ = Fx el

— Access: x = F~1% of dimension n

— F, F = concrete matrix

« Compressed Sensing
— Sparse: x € R"
— Access: y = Ax € R™, where m = O(klogn)

— A is usually designed (though sometimes:
random rows of the Fourier matrix)

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

~ 1 —ij
, = — . :]
X; nZ]E[n] xjw™Y,

* Assume X is exactly 1-sp. | o = ¢-2mim (n" root of unity)

- X #0 Xi = Ljen] X 0

* Problem:
— How many queries into x ?

 Algorithm:
— Sample x,, x4

¢ x, = aw® =

« x; = aw’

¢ (,Uf —_ xl/xO
— Can read off the frequency f

unit circle

COLUMBIA ENGINEERING "

The Fu Foundation School of Engineering and Applied Science

. %= 1 Zjem oY,
°* X; = aw' + noise w = e 2™M/n (nth oot of unity)
* Problem: Xi = X jemm & @Y
— Find y s.t. 1-sparse (in Fourier domain)
— Best approximation to x Parseval’s:
—1£ =9l <C- min IR =9I WP ==llel” = &[]

—|lx=yllz=C-_ min |[x—y]|
y: 1—sparse

 Will assume “error” is e fraction:

Useforz=x—y|

- P SIV ~ 12 2 =2 2 2
— min X — =). . X:|c<€e“-xs = €e“a
oM 12 =9I = B 1517 < €25

— E; “xj — yj|2] < e“a” (Parserval’s)
— Interesting when € < 1

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

* Suppose: a =1
* xXg=1+¢€

¢ x; = w! + ew

* So: i—; = ﬁ(mf + ew?)

* Error in frequency!
— Will recover y = w9 for g + f
—Thus ||X — || = ||X¢|| = 1 instead of O(e)...

* Good news: error bounded, up to en

unit circle

COLUMBIA |[ENGINEERING 5

The Fu Foundation School of Engineering and Applied Science

* X; = w" + noise
« Will find f by binary search!
« Bit O:
— f=2f;+bforbe{0,1}
» Claim: for pure signal y; = w':
— Yn/j2 = Yo (-1)°
= Yn/24r = Yr(_l)b
* Proof:
— Ynj2 = w2 = (1) = (=11 (-1)" = (-DPy,
— Ynj2er = @IV = (=1 w/T = (=1)Py,
 What about noise?

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

13

« We have: Ith = 0:

— x; = w"GATD) 4 poise

— y; = wl (2f1t+b) Fh =1
— Claim: yp 24, = v (=1)P /
— Ej “x] - y]-|2 < 62] (Parseval’s)
« Algorithm:
— For t times:
» Pick random r € [n]
» Check |xp/24r + X;| > |Xn/24r — x| : then b =0
* Otherwise b =1
— Take majority vote

« Claim: output the right b with 1 — 27%® probability
* Proof:

— Each test:
* Xnj24r, %, are within 5¢2 of y, /,.,, ¥ with probability 1 — 2 - 1/5 (Markov)
* Hence test works with at least 0.6 probability

— Majority of t tests work with 1 — 272 probability (Chernoff bound
concentration)

Ynj2+r T V| = 2
Yn/24r — Vr| =

Ynj24+r +Yr| =0
Yn/j24r — Vr| =

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

 Reduce to bit 0 case!

* We have
— x; = @' @1¥D) 4 poise
—_ yl = (2f1+b)

. Suppose b =0:

— y; = wi2f1 = (wz)iﬁ — (wn/z)
« where w,/, is the (n/2)™" root of unity
— Same problem as for Fourier transform over [n/2] !
 Suppose b =17
— Define y; = y;0™
« Then yi’ = ifl = iA+1-D) — ,)i(2f1)
» Just shifts all frequencies down by one!

— Continue as above for x; = x;0™"
« Note: we compute x; on the fly when whenever we query some x;

if1

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

* X; = w + noise
— Where f = by + by - 2" + by - 2% + -+ by n -
2

« Algorithm:
— Learn b,: take majority of t trials of
* Pick random r
* Check: |xn/2+r + xr| > |xn/2+r — Xy
— Thenset by =0
— Learn b,: take majority of t trials of
* Pick random r
o Check: |w™*Pox, 1y + x| > 0™ *P0x,, 100 — %,
— Thenset by =0
— Learn b,: take majority of t trials of
* Pick random r
o Check: |w™&Wot2biy oo+ x| > |w™/8Bot2b0x 00— x,
— Thenset b, =0

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

16

» Correctness:
— We learn O(log n) bits
— Each needs to succeed with probability 1 —
O(1/logn)
— Hence set t = O(loglogn)
* Overall performance:
— Number of samples: O(logn - loglogn)
— Same run-time

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

°* X; = alwifl + azwifz + e aka)ifk + notse
* Main ideas:

— Isolate each frequency
 Like in CountSketch or compressed sensing!
« “Throw” frequencies in “buckets”
* Hope have 1 frequency per “bucket”

— Throw in buckets:
« permute the frequencies (pseudo-)randomly
— Can have frequencies go as i — ai + b for random a, b
» partition in blocks: [1%][%+ 1,2?"

* Apply a filter that keeps only the correct block
COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

