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Lecture 22:

Linearity Testing

Sparse Fourier Transform

COMS E6998-9 F15



Administrivia, Plan

• Thu: no class. Happy Thanksgiving!

• Tue, Dec 1st:

– Sergei Vassilvitskii (Google Research) on 

MapReduce model and algorithms

• I’m away until next Thu, Dec 3rd

– Office hours: Tue 2:30-4:30, Wed 4-6pm

• Plan:

– Linearity Testing (finish)

– Sparse Fourier Transform

2



Last lecture

• Linearity Testing:

– 𝑓: −1, +1 𝑛 is linear iff for any 𝑥, 𝑦 ∈
−1, +1 𝑛, we have:

• 𝑓 𝑥 ⋅ 𝑓 𝑦 = 𝑓(𝑥 ⊕ 𝑦)

• Test: repeat 𝑂(1/𝜖) times

– Pick random 𝑥, 𝑦

– Verify that 𝑓 𝑥 ⋅ 𝑓 𝑦 = 𝑓(𝑥 ⊕ 𝑦)

• Main Theorem:

– If 𝑓 is 𝜖-far from linearity, then 

Pr 𝑡𝑒𝑠𝑡 𝑓𝑎𝑖𝑙𝑠 ≥ 𝜖
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Linearity Testing

• Remaining Lemma:

– Let 𝑇𝑥𝑦 = 1 iff 𝑓 𝑥 ⋅ 𝑓 𝑦 = 𝑓(𝑥 ⊕ 𝑦)

– Pr 𝑇𝑥𝑦 = 1 =
1

2
+

1

2
 𝑆⊆[𝑛]

 𝑓𝑆
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– Where  𝑓𝑆 = 〈𝑓, 𝜒𝑆〉 for 𝜒𝑆 𝑥 =  𝑖∈S 𝑥𝑖
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Discrete Fourier Transform

• Consider

– 𝑓: 𝑛 → ℜ
• also special case of more general setting:

• 𝑓: 𝑛 𝑑 → ℜ

• Will call such function: 𝑥 = (𝑥1, … 𝑥𝑛)

• Fourier transform:

–  𝑥𝑖 =
1

𝑛
 𝑗∈[𝑛] 𝑥𝑗𝜔

−𝑖𝑗, 

– where 𝜔 = 𝑒−2𝜋𝐢/𝑛 is the 𝑛𝑡ℎ root of unity

– 𝑥𝑖 =  𝑗∈ 𝑛  𝑥𝑗 𝜔𝑖𝑗

– Assume: 𝑛 is power of 2
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 𝑥𝑖 =
1

𝑛
 𝑗∈[𝑛] 𝑥𝑗𝜔−𝑖𝑗 , 

𝜔 = 𝑒−2𝜋𝐢/𝑛 (𝑛𝑡ℎ root of unity)

𝑥𝑖 =  𝑗∈ 𝑛  𝑥𝑗 𝜔𝑖𝑗



Why important?
• Imaging

– MRI, NMR

• Compression:
– JPEG: retain only high Fourier coefficients

• Signal processing

• Data analysis

• …
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 𝑥𝑖 =
1

𝑛
 𝑗∈[𝑛] 𝑥𝑗𝜔−𝑖𝑗 , 

𝜔 = 𝑒−2𝜋𝐢/𝑛 (𝑛𝑡ℎ root of unity)

𝑥𝑖 =  𝑗∈ 𝑛  𝑥𝑗 𝜔𝑖𝑗



Computing

• Naively:

– 𝑂(𝑛2)

• Fast Fourier Transform:

– 𝑂 𝑛 log 𝑛 time 

– [Cooley-Tukey 1964]

– [Gauss 1805]

• One of the biggest open questions in CS:

– Can we do in 𝑂(𝑛) time?
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 𝑥𝑖 =
1

𝑛
 𝑗∈[𝑛] 𝑥𝑗𝜔−𝑖𝑗 , 

𝜔 = 𝑒−2𝜋𝐢/𝑛 (𝑛𝑡ℎ root of unity)

𝑥𝑖 =  𝑗∈ 𝑛  𝑥𝑗 𝜔𝑖𝑗



Sparse Fourier Transform
• Many signals represented

well by sparse Fourier transform

• If  𝑥 is sparse,
– Can we do better?

• YES!
– 𝑂(𝑘 ⋅ log2𝑛) time possible, assuming 𝑘 non-zero Fourier 

coefficients!

– Sublinear time: just sample a few positions in 𝑥

• Even when  𝑥 is approximately sparse
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 𝑥𝑖 =
1

𝑛
 𝑗∈[𝑛] 𝑥𝑗𝜔−𝑖𝑗 , 

𝜔 = 𝑒−2𝜋𝐢/𝑛 (𝑛𝑡ℎ root of unity)

𝑥𝑖 =  𝑗∈ 𝑛  𝑥𝑗 𝜔𝑖𝑗



Similar to Compressed Sensing

• Sparse Fourier Transform

– Sparse:  𝑥 = 𝐹𝑥

– Access: 𝑥 = 𝐹−1  𝑥 of dimension 𝑛

– 𝐹,  𝐹 = concrete matrix

• Compressed Sensing

– Sparse: 𝑥 ∈ ℜ𝑛

– Access: 𝑦 = 𝐴𝑥 ∈ ℜ𝑚, where 𝑚 = 𝑂 𝑘 log 𝑛

– 𝐴 is usually designed (though sometimes: 

random rows of the Fourier matrix)
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 𝑥𝑖 =
1

𝑛
 𝑗∈[𝑛] 𝑥𝑗𝜔−𝑖𝑗 , 

𝜔 = 𝑒−2𝜋𝐢/𝑛 (𝑛𝑡ℎ root of unity)

𝑥𝑖 =  𝑗∈ 𝑛  𝑥𝑗 𝜔𝑖𝑗



Warm-up: 𝑘 = 1
• Assume  𝑥 is exactly 1-sp.

–  𝑥𝑓 ≠ 0

• Problem:
– How many queries into 𝑥 ?

• Algorithm:
– Sample 𝑥0, 𝑥1

• 𝑥0 = 𝑎𝜔0𝑓 = 𝑎

• 𝑥1 = 𝑎𝜔𝑓

• 𝜔𝑓 = 𝑥1/𝑥0

– Can read off the frequency 𝑓
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 𝑥𝑖 =
1

𝑛
 𝑗∈[𝑛] 𝑥𝑗𝜔−𝑖𝑗 , 

𝜔 = 𝑒−2𝜋𝐢/𝑛 (𝑛𝑡ℎ root of unity)

𝑥𝑖 =  𝑗∈ 𝑛  𝑥𝑗 𝜔𝑖𝑗



What about noise?

• 𝑥𝑖 = 𝑎𝜔𝑖𝑓 + 𝑛𝑜𝑖𝑠𝑒

• Problem:

– Find 𝑦 s.t. 1-sparse (in Fourier domain)

– Best approximation to 𝑥

– ||  𝑥 −  𝑦||2 ≤ 𝐶 ⋅ min
 𝑦: 1−𝑠𝑝𝑎𝑟𝑠𝑒

||  𝑥 −  𝑦||

– ||𝑥 − 𝑦||2 ≤ 𝐶 ⋅ min
𝑦: 1−𝑠𝑝𝑎𝑟𝑠𝑒

||𝑥 − 𝑦||

• Will assume “error” is 𝜖 fraction:

– min
 𝑦: 1−𝑠𝑝𝑎𝑟𝑠𝑒

||  𝑥 −  𝑦||2 =  𝑗≠𝑓 |  𝑥𝑗|
2 ≤ 𝜖2 ⋅  𝑥𝑓

2 = 𝜖2𝑎2

– 𝐸𝑗 𝑥𝑗 − 𝑦𝑗
2

≤ 𝜖2𝑎2 (Parserval’s)

– Interesting when 𝜖 ≪ 1
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 𝑥𝑖 =
1

𝑛
 𝑗∈[𝑛] 𝑥𝑗𝜔−𝑖𝑗 , 

𝜔 = 𝑒−2𝜋𝐢/𝑛 (𝑛𝑡ℎ root of unity)

𝑥𝑖 =  𝑗∈ 𝑛  𝑥𝑗 𝜔𝑖𝑗

Parseval’s: 

||  𝑧||2 =
1

𝑛
||𝑧||2 = 𝐸𝑗 𝑧𝑗

2

Use for 𝑧 = 𝑥 − 𝑦 !



Re-use 𝑘 = 1 algorithm?

• Suppose: 𝑎 = 1

• 𝑥0 = 1 + 𝜖

• 𝑥1 = 𝜔𝑓 + 𝜖𝜔𝑞

• So: 
𝑥1

𝑥0
=

1

1+𝜖
(𝜔𝑓 + 𝜖𝜔𝑞)

• Error in frequency!

– Will recover 𝑦 = 𝜔𝑔 for 𝑔 ≠ 𝑓

– Thus ||  𝑥 −  𝑦|| ≥ ||  𝑥𝑓|| = 1 instead of 𝑂(𝜖)…

• Good news: error bounded, up to 𝜖𝑛
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Algorithm for 𝑘 = 1 + noise

• 𝑥𝑖 = 𝜔𝑖𝑓 + 𝑛𝑜𝑖𝑠𝑒

• Will find 𝑓 by binary search!

• Bit 0:

– 𝑓 = 2𝑓1 + 𝑏 for 𝑏 ∈ {0,1}

• Claim: for pure signal 𝑦𝑖 = 𝜔𝑖𝑓:

– 𝑦𝑛/2 = 𝑦0 ⋅ −1 𝑏

– 𝑦𝑛/2+𝑟 = 𝑦𝑟 −1 𝑏

• Proof:

– 𝑦𝑛/2 = 𝜔𝑓⋅𝑛/2 = −1 𝑓 = −1 2𝑓1 ⋅ −1 𝑏 = −1 𝑏𝑦0

– 𝑦𝑛/2+𝑟 = 𝜔𝑓⋅𝑛/2+𝑓𝑟 = −1 𝑓𝜔𝑓𝑟 = −1 𝑏𝑦𝑟

• What about noise?
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Bit 0 with noise
• We have:  

– 𝑥𝑖 = 𝜔𝑖⋅(2𝑓1+𝑏) + 𝑛𝑜𝑖𝑠𝑒

– 𝑦𝑖 = 𝜔𝑖⋅(2𝑓1+𝑏)

– Claim: 𝑦𝑛/2+𝑟 = 𝑦𝑟 −1 𝑏

– 𝐸𝑗 𝑥𝑗 − 𝑦𝑗
2

≤ 𝜖2 (Parseval’s)

• Algorithm:
– For 𝑡 times:

• Pick random 𝑟 ∈ [𝑛]

• Check 𝑥𝑛/2+𝑟 + 𝑥𝑟 > |𝑥𝑛/2+𝑟 − 𝑥𝑟| : then 𝑏 = 0

• Otherwise 𝑏 = 1

– Take majority vote

• Claim: output the right 𝑏 with 1 − 2−Ω(𝑡) probability

• Proof:
– Each test: 

• 𝑥𝑛/2+𝑟 , 𝑥𝑟 are within 5𝜖2 of 𝑦𝑛/2+𝑟, 𝑦𝑟 with probability 1 − 2 ⋅ 1/5 (Markov)

• Hence test works with at least 0.6 probability

– Majority of 𝑡 tests work with 1 − 2−Ω 𝑡 probability (Chernoff bound 
concentration)
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If 𝑏 = 0: 

𝑦𝑛/2+𝑟 + 𝑦𝑟 = 2

𝑦𝑛/2+𝑟 − 𝑦𝑟 = 0

If 𝑏 = 1: 

𝑦𝑛/2+𝑟 + 𝑦𝑟 = 0

𝑦𝑛/2+𝑟 − 𝑦𝑟 = 2



Bit 1
• Reduce to bit 0 case!

• We have

– 𝑥𝑖 = 𝜔𝑖(2𝑓1+𝑏) + 𝑛𝑜𝑖𝑠𝑒

– 𝑦𝑖 = 𝜔𝑖(2𝑓1+𝑏)

• Suppose 𝑏 = 0:

– 𝑦𝑖 = 𝜔𝑖⋅2𝑓1 = 𝜔2 𝑖𝑓1 = 𝜔𝑛/2
𝑖𝑓1

• where 𝜔𝑛/2 is the 𝑛/2 𝑡ℎ root of unity

– Same problem as for Fourier transform over [𝑛/2] !

• Suppose 𝑏 = 1 ?
– Define 𝑦𝑖

′ = 𝑦𝑖𝜔
−𝑖

• Then 𝑦𝑖
′ = 𝜔𝑖𝑓−𝑖 = 𝜔𝑖 2𝑓1+1−1 = 𝜔𝑖⋅ 2𝑓1

• Just shifts all frequencies down by one!

– Continue as above for 𝑥𝑖
′ = 𝑥𝑖𝜔

−𝑖

• Note: we compute 𝑥𝑖
′ on the fly when whenever we query some 𝑥𝑖

15



Overall algorithm to recover 𝑓
• 𝑥𝑖 = 𝜔𝑖𝑓 + 𝑛𝑜𝑖𝑠𝑒

– Where 𝑓 = 𝑏0 + 𝑏1 ⋅ 21 + 𝑏2 ⋅ 22 + ⋯ + 𝑏lg
𝑛

2
⋅

𝑛

2

• Algorithm:
– Learn 𝑏0: take majority of 𝑡 trials of

• Pick random 𝑟

• Check: 𝑥𝑛/2+𝑟 + 𝑥𝑟 > |𝑥𝑛/2+𝑟 − 𝑥𝑟|
– Then set 𝑏0 = 0

– Learn 𝑏1: take majority of 𝑡 trials of
• Pick random 𝑟

• Check: 𝜔𝑛/4⋅𝑏0𝑥𝑛/4+𝑟 + 𝑥𝑟 > |𝜔𝑛/4⋅𝑏0𝑥𝑛/4+𝑟 − 𝑥𝑟|
– Then set 𝑏1 = 0

– Learn 𝑏2: take majority of 𝑡 trials of
• Pick random 𝑟

• Check: 𝜔𝑛/8⋅(𝑏0+2𝑏1)𝑥𝑛/8+𝑟 + 𝑥𝑟 > |𝜔𝑛/8⋅(𝑏0+2𝑏1)𝑥𝑛/8+𝑟 − 𝑥𝑟|
– Then set 𝑏2 = 0

– …
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Wrap-up of the algorithm 𝑘 = 1

• Correctness:

– We learn 𝑂(log 𝑛) bits

– Each needs to succeed with probability 1 −
𝑂(1/ log 𝑛)

– Hence set 𝑡 = 𝑂(log log 𝑛)

• Overall performance:

– Number of samples: 𝑂(log 𝑛 ⋅ log log 𝑛)

– Same run-time
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𝑘 > 1

• 𝑥𝑖 = 𝑎1𝜔𝑖𝑓1 + 𝑎2𝜔𝑖𝑓2 + ⋯ 𝑎𝑘𝜔𝑖𝑓𝑘 + 𝑛𝑜𝑖𝑠𝑒

• Main ideas:

– Isolate each frequency

• Like in CountSketch or compressed sensing!

• “Throw” frequencies in “buckets”

• Hope have 1 frequency per “bucket”

– Throw in buckets: 

• permute the frequencies (pseudo-)randomly

– Can have frequencies go as 𝑖 → 𝑎𝑖 + 𝑏 for random 𝑎, 𝑏

• partition in blocks: 1,
𝑛

𝑘
,

𝑛

𝑘
+ 1,

2𝑛

𝑘
, …

• Apply a filter that keeps only the correct block
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