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Lecture 18:

Uniformity Testing

Monotonicity Testing

COMS E6998-9 F15



Administrivia, Plan

• Admin:

– PS3: pick up

– Project proposals: Nov 16th

• Plan:

– Uniformity Testing

– Monotonicity Testing

• Scriber?
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Uniformity testing
• Enough to distinguish:

– ||𝐷||2
2 = 1/𝑛 (unif)

– ||𝐷||2
2 > 1/𝑛 + 𝜖2/𝑛 (non-unif)

• Lemma: 
1

𝑀
⋅ 𝐶 is a good 

enough as long as

– 𝑚 = Ω
𝑛

𝜖4

– where 𝑀 = 𝑚(𝑚 − 1)/2

• Let 𝑑 = ||𝐷||2
2

• Claim 1: 𝐸
𝐶

𝑀
= 𝑑

• Claim 2: 𝑉𝑎𝑟
𝐶

𝑀
≤
𝑑

𝑀
+
8𝑑2 𝑛

𝑚
• Finish lemma proof…
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Algorithm UNIFORM:

Input: 𝑛,𝑚, 𝑥1, … 𝑥𝑚
𝐶 = 0;
for(i=0; i<m; i++)
for(j=i+1; j<m; j++)

if (𝑥𝑖 = 𝑥𝑗)

𝐶++;

if (𝐶 < 𝑎 ⋅ 𝑚2/𝑛)
return “Uniform”;

else
return “Not uniform”;

// 𝑎: constant dependent on 



Identity Testing

• Problem:
– We have known distribution 𝑝

– Given samples from 𝑞, distinguish between:
• 𝑝 = 𝑞 vs ||𝑝 − 𝑞||1 ≥ 𝜖

• Uniformity is an instance (𝑝 = 𝑈𝑛)

• Classic 𝜒2 test [Pearson 1900]:
– Let 𝑋𝑖 = # of occurrences of 𝑖

–  𝑖
𝑋𝑖−𝑘𝑝𝑖

2−𝑘𝑝𝑖

𝑝𝑖
≥ 𝛼

• Test of [Valiant, Valiant 2014]:

–  𝑖
𝑋𝑖−𝑘𝑝𝑖

2−𝑋𝑖

𝑝
𝑖
2/3 ≥ 𝛼
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Distribution Testing++
• Other properties?

• Equality testing:
– Given samples from unknown 𝑝, 𝑞, distinguish

– 𝑝 = 𝑞 vs ||𝑝 − 𝑞||1 ≥ 𝜖
– Sample bound: Θ𝜖(𝑛

2/3)

• Independence testing:
– Given samples from (𝑝, 𝑞) ∈ 𝑛 × [𝑛], 

distinguish:

– 𝑝 is independent of 𝑞 vs || 𝑝, 𝑞 − 𝐴 × 𝐵||1 ≥ 𝜖
for any distributions 𝐴, 𝐵 on [𝑛]

– Sample bound:  Θ𝜖(𝑛)

• Many more…
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Testing Monotonicity
• Problem: given a sequence 𝑥1, … 𝑥𝑛, distinguish:

– sequence is sorted, vs

– sequence is NOT sorted

• In 𝑜(𝑛) time?

• Hard exactly: can have just one inversion 
somewhere

• Approximation notion: 𝜖-far

6

All sequences

of length 𝑛
all sorted sequences

𝜖-far: if need to delete at least 𝜖
fraction of elements to make it sorted



Testing Monotonicity

• A testing algorithm:
– Sample random positions 𝑖
– Check that 𝑥𝑖 ≤ 𝑥𝑗 iff 𝑖 < 𝑗

• How many samples?
– Bad case: 2,1,4,3,…,i,i-1,i+2,i+1,…,n,n-1

– At least Ω 𝑛 before we see an adjacent pair

• Fix?
– Can sample adjacent pairs!

• Works?
– Bad case too
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𝜖-far: if need to delete at least 𝜖
fraction of elements to make it sorted



Algorithm: Monotonicity
• Assumption:

– 𝑥𝑖 ≠ 𝑥𝑗
• One iteration:

– Pick a random 𝑖
– Do binary search on 𝑥 = 𝑥𝑖 in 

the sequence
• Start with interval [s,t]=[1,n]

• For interval [s,t], find middle 
𝑚 =

𝑠+𝑡

2
• If 𝑥 < 𝑥𝑚, recurse on the left

• If 𝑥 > 𝑥𝑚, recurse on the right

• Fail if find inconsistency:
– 1) 𝑥𝑖 not found where it should 

be

– 2) 𝑥𝑚 ∉ [𝑥𝑠, 𝑥𝑡]
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Algorithm MONOTONICITY:

Input: 𝑛, 𝑥1, … 𝑥𝑛
for(r=0; 𝑟 < 3/𝜖; r++)

Let 𝑥 = 𝑥𝑖
perform binary search on 𝑥
if (𝑥 not found at position 𝑖

OR binary search inconsistent)
return “not sorted”;

If finished ok, return “sorted”.



Analysis: Monotonicity
• If sorted, will pass the test

• If 𝜖-far from sorted…
– How do we argue?

– Via contrapositive

• Lemma: suppose one iteration 
succeeds with probability ≥
1 − 𝜖
– Then, sequence ≤ 𝜖 far from a 

sorted sequence

• Hence, 3/𝜖 repetitions are 
enough to catch the case of >
𝜖 far from sortedness with 
probability 90%:
– Prob to report “sorted” when 

it’s far: is at most 1 − 𝜖 3/𝜖 ≤
𝑒−3 ≤ 0.1
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Algorithm MONOTONICITY:

Input: 𝑛, 𝑥1, … 𝑥𝑛
for(r=0; 𝑟 < 3/𝜖; r++)

Let 𝑥 = 𝑥𝑖
perform binary search on 𝑥
if (𝑥 not found at position 𝑖

OR binary search inconsistent)
return “not sorted”;

If finished ok, return “sorted”.



Analysis: Monotonicity
• Lemma: suppose one iteration 

succeeds with probability ≥ 1 − 𝜖
– Then, sequence ≤ 𝜖 far from a 

sorted sequence

• Proof:
– Call 𝑖 ∈ [𝑛] good if it passes the 

test

– Claim: if 𝑖 < 𝑗 are good, then 𝑥𝑖 <
𝑥𝑗
• Consider the binary search tree, and 

their lowest common ancestor 𝑥𝑚
• It must be:

– 𝑥𝑖 < 𝑥𝑚 and

– 𝑥𝑚 < 𝑥𝑗

– Hence: good 𝑖’s are sorted!

– “probability ≥ 1 − 𝜖” ⇒ number of 
good elements is at least 1 − 𝜖 𝑛

– End of proof!
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Algorithm MONOTONICITY:

Input: 𝑛, 𝑥1, … 𝑥𝑛
for(r=0; 𝑟 < 3/𝜖; r++)

Let 𝑥 = 𝑥𝑖
perform binary search on 𝑥
if (𝑥 not found at position 𝑖

OR binary search inconsistent)
return “not sorted”;

If finished ok, return “sorted”.



Monotonicity: discussion
• Assumption?

– Replace all 𝑥𝑖 by (𝑥𝑖 , 𝑖)
– Then sequence must be strictly 

monotonic

• Test is adaptive:
– Where we query depends on what we 

learned from the previous queries

• Do we need adaptivity?
– No!

– A each iteration, we query for 𝑥 = 𝑥𝑖
– We know precisely where binary 

search is supposed to look at!
• E.g., if 𝑖 = 1, then it’s positions: 
𝑛

2
,
𝑛

4
,
𝑛

8
, …

– Can generate all the positions to 
query at the beginning and query 
them all at the same time

– Unless, binary search is inconsistent, 
in which case we detect this from the 
queries positions
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Algorithm MONOTONICITY:

Input: 𝑛, 𝑥1, … 𝑥𝑛
for(r=0; 𝑟 < 3/𝜖; r++)

Let 𝑥 = 𝑥𝑖
perform binary search on 𝑥
if (𝑥 not found at position 𝑖

OR binary search inconsistent)
return “not sorted”;

If finished ok, return “sorted”.



Monotonicity++

• 𝑂(log 𝑛) queries tight?

– Yes

• Can consider the more general case:

– Function 𝑓: 0,1 𝑑 → {0,1}

– Monotone: if 𝑓 𝑥 ≤ 𝑓(𝑦) whenever 𝑥 ≤ 𝑦
(coordinate-wise)

– Can test in  𝑂𝜖 𝑑 queries! [GGLRS’98, 

KMS’15]
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Testing graphs

• We have a graph 𝐺 = 𝑉, 𝐸
– 𝑛 vertices

– 𝑚 edges

• Dense case:

– 𝑚 = Θ 𝑛2

• Sparse case:
– Degree 𝑑 ≤ 𝑂(1)

• Property testing:
– Eg, is graph 𝐺 connected?

– Approximation?
• 𝜖-far: if we need to delete/insert ≥ 𝜖𝑚 edges
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Connectivity in sparse graph
• Approximation?

– 𝜖-far: if we need to delete/insert ≥ 𝜖𝑚 edges

– 𝑚 = 𝑑𝑛 = 𝑂(𝑛)

• When does it make sense?
– 𝜖𝑑 ≪ 1 (otherwise any sparse graph is close to being 

connected!)

• Assume: 𝜖𝑑 ≪ 1
• Algorithm:

– For 𝑟 = 𝑂
1

𝜖𝑑
times repeat:

• Choose a random node 𝑠
• Run a BSF from 𝑠
• Until see more than 4/𝜖𝑑 node in the CC

• If the CC is smaller, then report “disconnected”

– Otherwise, report “connected”
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Analysis

• Claim: if 𝜖-far, then graph has at most Ω(𝜖𝑑𝑛)
connected components

• Proof:

– Suppose 𝐺 has 𝑐 connected component

– Will connect, using 𝑂(𝑐) modifications

– Idea:
• Just connect each connected component consecutively

• Issue: can get higher degree than 𝑑 in a CC
– Is really an issue when all nodes in a CC have full degree

– Just delete one edge (preserving connectivity)

• Hence, on average a CC has 𝑂
𝑛

𝜖𝑑𝑛
= 𝑂

1

𝜖𝑑
nodes

– Will pick one of them with probability at least 𝜖𝑑
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