COMS E6998-9 F15

Lecture 18:
Uniformity Testing
Monotonicity Testing

COLUMBIA ENGINEERING

The Fu Foundation School of Engineering and Applied Science

* Admin:
— PS3: pick up
— Project proposals: Nov 16th

 Plan:
— Uniformity Testing
— Monotonicity Testing

e Scriber?

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

« g . Algorithm UNIFORM:
» Enough to distinguish: SOTET

— ||D] % = 1/n (unif) Input: n, M, Xq, ... X,
— ||ID||5 > 1/n + €?/n (non-unif) | C=0;

1 . for(i=0; i<m; i++)
 Lemma: —-Cisa good Sorlisiidls i i)
enough as long as if (x; = x;)
C++;
\/ﬁ ’
~m=n()
64 . 2
— where M = m(m —1)/2 'f(C<Cf,'"i‘/"),,
5 return “Uniform”;
 Letd = ||D]||5 else
: . Ccl _ return “Not uniform”;
Claim 1: E [M_ =d // a: constant dependent on ¢
 Claim 2: Var _E] et 8d"yVn
) Ml — M m

* Finish lemma proof...

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

* Problem:
— We have known distribution p
— Given samples from g, distinguish between:

*p=qVs|lp—qlli =€
 Uniformity is an instance (p = U,)

e Classic y? test [Pearson 1900]:
— Let X; = # of occurrences of i

_ Z (Xi_kpi)z_kpi 2 a
l ;
Di

» Test of [Valiant, Valiant 2014]:

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

Other properties?

Equality testing:

— Given samples from unknown p, g, distinguish
—p=qVvs|lp—qlli=¢

— Sample bound: 0.(n?/3?)

Independence testing:

— Given samples from (p, q) € [n] X [n],
distinguish:

— p is independent of g vs ||(p,q) —A X B||; = €
for any distributions A, B on [n]

— Sample bound: 0,(n)
 Many more...

COLUMBIA [ENGINEERING

The Fu Foundation School of Engineering and Applied Science

w8, COLUMBIAENGINEERING

7N

Testing Monotonicity

* Problem: given a sequence x4, ... x,,, distinguish:
— sequence is sorted, vs
— sequence is NOT sorted

* In o(n) time?

« Hard exactly: can have just one inversion
somewhere

« Approximation notion: e-far

All sequences
of length n

e-far: if need to delete at least €
fraction of elements to make it sorted

The Fu Foundation School of Engineering and Applied Science

e-far: if need to delete at least €

fraction of elements to make it sorted

A testing algorithm:
— Sample random positions i

— Check that x; < x; iff i <

How many samples?

— Bad case: 2,1,4,3,...,i,i-1,i+2,i+1,...,n,n-1

— At least Q(+1/n) before we see an adjacent pair
* Fix?

— Can sample adjacent pairs!

Works?

— Bad case too

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

* Assumption:
— X * X]
* One iteration:
— Pick a random i
— Do binary search on x = x; in
the sequence
 Start with interval [s,t]=[1,n]

* For irsljcr?rval [s,t], find middle

2
» If x < x,,,, recurse on the left

» If x > x,,,, recurse on the right
 Fail if find inconsistency:

— l1)) x; not found where it should
e

- 2) Xm & [xs» xt]

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

Algorithm MONOTONICITY:

Input: n, x4, ... X,
for(r=0; r < 3/€; r++)
Let x = x;
perform binary search on x
if (x not found at position i
OR binary search inconsistent)
return “not sorted”;

If finished ok, return “sorted”.

» If sorted, will pass the test | ajgorithm MoNoOTONICITY:

* |f e-far from sorted...
— How do we argue? Input: n, xq, ... X,
— Via contrapositive for(r=0; 7 < 3/€; r++)

. Lemma: suppose one iteration | Xt = %i

succeeds with probability > perform binary search on x
1—¢ if (x not found at position i

OR binary search inconsistent)

_ <
Then, sequence < € far from a S ———

sorted sequence

* Hence, 3/e repetitions are

If finished ok, return “sorted”.
enough to catch the case of >

e far from sortedness with

probability 90%:

— Prob to report “sorted” when
it’s far: is at most (1 — ¢€)3/€ <
e <0.1

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

« Lemma: suppose one iteration
succeeds with probability > 1 — €

— Then, sequence < e far from a
sorted sequence

* Proof:
— Call i € [n] good if it passes the
test
— Claim: if i < j are good, then x; <
Xj

» Consider the binary search tree, and
their lowest common ancestor x,,

* |t must be:
- x; < x,, and
— Xm < Xj
— Hence: good i’s are sorted!

— “probability > 1 — €” = number of
good elements is at least (1 — e)n

— End of proof!

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

Algorithm MONOTONICITY:

Input: n, x4, ... X,
for(r=0; r < 3/€; r++)
Let x = x;
perform binary search on x
if (x not found at position i
OR binary search inconsistent)
return “not sorted”;

If finished ok, return “sorted”.

e Assumption?
— Replace all x; by (x;,1)
— Then sequence must be strictly

Algorithm MONOTONICITY:

monotonic Input: n, x4, ... X,
. Test is adaptive: for(r=0; r < 3/€; r++)
— Where we query depends on what we | Letx = x;
learned from thg previous queries perform binary search on x
*+ Do Vl\\fe' need adaptivity? if (x not found at position i
— No!

OR binary search inconsistent)

— A each iteration, we query for x = x;
) query ' return “not sorted”;

— We know precisely where binary
search is supposed to look at!
+ E.g.,if i = 1, then it’s positions: If finished ok, return “sorted”.

2’4’8’7
— Can generate all the positions to
query at the beginning and query
them all at the same time

— Unless, binary search is inconsistent,
in which case we detect this from the
queries positions

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

* O(log n) queries tight?
— Yes

» Can consider the more general case:
— Function £:{0,1}¢ - {0,1}

— Monotone: if f(x) < f(y) whenever x <y
(coordinate-wise)

— Can test in O.(Vd) queries! [GGLRS’98,
KMS’15)

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

12

 We have a graph G = (V,E)
— n vertices
— m edges
* Dense case:
—m = 0(n?
* Sparse case:
— Degree d < 0(1)
* Property testing:
— Eg, is graph G connected?
— Approximation?
« e-far: if we need to delete/insert > em edges

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

Approximation?

— e-far: if we need to delete/insert > em edges
—m=dn=0(n)

When does it make sense?

— ed < 1 (otherwise any sparse graph is close to being
connected!)

Assume: ed K 1
Algorithm:
1

—Forr=20 (Ed) times repeat:

* Choose a random node s

* Run a BSF from s

« Until see more than 4/ed node in the CC

 If the CC is smaller, then report “disconnected”

— Otherwise, report “connected”

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

« Claim: if e-far, then graph has at most Q(edn)
connected components

* Proof:
— Suppose G has ¢ connected component
— Will connect, using 0(c) modifications

— ldea:
 Just connect each connected component consecutively

* Issue: can get higher degree than d in a CC
— Is really an issue when all nodes in a CC have full degree
— Just delete one edge (preserving connectivity)

» Hence, on average a CC has 0 (L) =0 (1)

edn 5
nodes
— Will pick one of them with probability at least ed

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science

