
11

Lecture 17:

Sublinear-time algorithms

COMS E6998-9 F15

Administrivia, Plan

• Admin:

– My office hours after class (CSB517)

• Plan:

– Finalize embeddings

– Sublinear-time algorithms

– Projects

• Scriber?

2

Embeddings of various metrics

into ℓ1

Metric Upper bound

Earth-mover distance

(𝑠-sized sets in 2D plane)

𝑂 log 𝑠
[Cha02, IT03]

Earth-mover distance

(𝑠-sized sets in 0,1 𝑑)

𝑂(log 𝑠 ⋅ log 𝑑)
[AIK08]

Edit distance over 0,1 𝑑

(#indels to transform x->y)

2 𝑂 log 𝑑

[OR05]

Ulam (edit distance between
permutations)

𝑂 log 𝑑
[CK06]

Block edit distance 𝑂 log 𝑑
[MS00, CM07]

edit(1234567,

7123456) = 2

edit(banana ,

ananas) = 2

Non-embeddability into ℓ1

Metric Upper bound

Earth-mover distance

(𝑠-sized sets in 2D plane)

𝑂 log 𝑠
[Cha02, IT03]

Earth-mover distance

(𝑠-sized sets in 0,1 𝑑)

𝑂(log 𝑠 ⋅ log 𝑑)
[AIK08]

Edit distance over 0,1 𝑑

(#indels to transform x->y)

2 𝑂 log 𝑑

[OR05]

Ulam (edit distance between
permutations)

𝑂 log 𝑑
[CK06]

Block edit distance 𝑂 log 𝑑
[MS00, CM07]

Lower bounds

Ω log 𝑠

[NS07]

Ω log 𝑠
[KN05]

Ω log 𝑑
[KN05,KR06]

 Ω log 𝑑
[AK07]

4/3
[Cor03]

Distortion 𝐷 implies sketch (decision version) with 𝑂(𝐷)
approximation and 𝑂(1) size! (implies NNS)

OPEN to get better for pretty much all these distances!

Sublinear-time algorithms

5

Setup

• Can we get away with not
even looking at all data?

– Just use a sample…

• Where do we get samples?

– stored on disk, passing
through a router, etc

– Data comes as a sample

– Observation of a “natural”
phenomenon

2 5 7 5 5

Two types of algorithms

• Classic:

– Output an answer, approximately

– E.g.: number of triangles in a graph!

• Property testing:

– Does object 𝑂 have 𝑏𝑙𝑎ℎ property or not

– E.g.: does graph have a triangle or not

– Distribution testing: 𝑂=distribution

– Need a new notion of approximation

7

Distribution Testing

• Problem:

– given 𝑚 samples 𝑥1, … 𝑥𝑚 1,2,…𝑛 , from 𝐷

– do they come from a uniform distribution?

• Hard to solve precisely:

– Uniform except 6 has probability 10−50

higher than normal

– Do we care about 10−50?

• Use approximation…

8

1 2 3 4 5 6 7 8

Approximation: total variation
• Goal: distinguish between

– exactly uniform

– sufficiently non-uniform:
• -far: ||𝐷 − 𝑈𝑛||1 ≥ 𝜖

• Why ℓ1 distance?
– Equivalent to Total Variation distance:

– How to distinguish distributions 𝐴, 𝐵 with 1 sample?
• a test: is a set 𝑇 ⊂ [𝑛]
• Check whether a sample 𝑥 ∈ 𝑇

• Distinguishing probability: Pr
𝐴
𝑥 ∈ 𝑇 − Pr

𝐵
𝑥 ∈ 𝑇

• We want the best such test:

𝑇𝑉 𝐴, 𝐵 = max
𝑇⊂[𝑛]

Pr
𝐴
𝑥 ∈ 𝑇 − Pr

𝐵
𝑥 ∈ 𝑇

– Claim: 𝑇𝑉 𝐴, 𝐵 =
1

2
||𝐴 − 𝐵||1

• ||𝐷 − 𝑈𝑛||1 ≤ 𝜖 means:
– sampling up to ~1/ times nearly-equivalent to sampling from a

uniform distribution

9

Algorithm attempt

• How shall we test uniformity?

– Estimate distribution empirically, 𝐷

– Compute || 𝐷 − 𝑈𝑛||…

– How many samples do we need?

• At least 𝑛/2 : if half the coordinates are zero, far

from uniform!

– 𝜒2 test: also Ω 𝑛 samples

• Can we do better?

• Theorem: can test uniformity with 𝑂𝜖(𝑛)
samples

10

Algorithm for Uniformity

• Counts the number of

collisions

• Intuition:

– If not uniform, more

likely to have more

collisions

11

Algorithm UNIFORM:

Input: 𝑛,𝑚, 𝑥1, … 𝑥𝑚
𝐶 = 0;
for(i=0; i<m; i++)
for(j=i+1; j<m; j++)

if (𝑥𝑖 = 𝑥𝑗)

𝐶++;

if (𝐶 < 𝑎 ⋅ 𝑚2/𝑛)
return “Uniform”;

else
return “Not uniform”;

// 𝑎: constant dependent on 

1 2 3 4 5 6 7 8

Algorithm intuition

• Uses ~ 𝑛 samples

– as long as all distinct, no

way to tell apart

– first collisions appear at

~ 𝑛 - the birthday

paradox!

12

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Algorithm UNIFORM:

Input: 𝑛,𝑚, 𝑥1, … 𝑥𝑚
𝐶 = 0;
for(i=0; i<m; i++)
for(j=i+1; j<m; j++)

if (𝑥𝑖 = 𝑥𝑗)

𝐶++;

if (𝐶 < 𝑎 ⋅ 𝑚2/𝑛)
return “Uniform”;

else
return “Not uniform”;

// 𝑎: constant dependent on 

Analysis

• Consider ℓ2 distance!

• If 𝐷 = 𝑈𝑛
– ||𝐷 − 𝑈𝑛||2 = 0

• If ||𝐷 − 𝑈𝑛||1 ≥ 𝜖

– ||𝐷 − 𝑈𝑛||2
2 > 𝜖2/𝑛

• Claim:

||𝐷 − 𝑈𝑛||2
2 = ||𝐷||2

2 − 1/𝑛

• Hence, enough to distinguish:

– ||𝐷||2
2 = 1/𝑛 (unif)

– ||𝐷||2
2 > 1/𝑛 + 𝜖2/𝑛 (non-unif)

• Compute ||𝐷||2
2 up to additive

𝜖2/𝑛 ?

13

Algorithm UNIFORM:

Input: 𝑛,𝑚, 𝑥1, … 𝑥𝑚
𝐶 = 0;
for(i=0; i<m; i++)
for(j=i+1; j<m; j++)

if (𝑥𝑖 = 𝑥𝑗)

𝐶++;

if (𝐶 < 𝑎 ⋅ 𝑚2/𝑛)
return “Uniform”;

else
return “Not uniform”;

// 𝑎: constant dependent on 

Analysis

• New goal: distinguish

– ||𝐷||2
2 = 1/𝑛

– ||𝐷||2
2 > 1/𝑛 + 𝜖2/𝑛

• Lemma:
1

𝑀
⋅[# collisions]

is a good enough as

long as

–𝑚 = Ω
𝑛

𝜖4

– where 𝑀 = 𝑚(𝑚 − 1)/2

14

Algorithm UNIFORM:

Input: 𝑛,𝑚, 𝑥1, … 𝑥𝑚
𝐶 = 0;
for(i=0; i<m; i++)
for(j=i+1; j<m; j++)

if (𝑥𝑖 = 𝑥𝑗)

𝐶++;

if (𝐶 < 𝑎 ⋅ 𝑚2/𝑛)
return “Uniform”;

else
return “Not uniform”;

// 𝑎: constant dependent on 

• Projects

15

