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Lecture 15:
Least Square Regression
Metric Embeddings

COLUMBIA ENGINEERING

The Fu Foundation School of Engineering and Applied Science




o PS2:

— Pick up after class
* 120->144 auto extension

 Plan:
— Least Squares Regression (finish)

— Metric Embeddings
* “reductions for distances”
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* Problem:
—argmin,.||Ax — b||
— where Ais n X d matrix
— b is a vector of dimension n
-n>d

« Usual (exact) solution:

— Perform SVD (singular value decomposition)
— Takes 0(nd®™1) = 0(nd*373) time
» Faster?
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« Approximate solution x':

—||[Ax" — b|| < (1 + €)||Ax™ — b||
* Where x* optimal solution

* Tool: dimension reduction for subspaces!
— A map IT1: R™* - R is (d, €, §)-subspace
embedding if

* For any linear subspace P c R" of dimension d,
we have that

I1
Pr ‘v’pEP:” (p)”E(l—E,l-l-E) >1-9

I Pl

— PS3-2: usual dimension reduction implies
(d,e,0.1) for target dimension k = 0(d/e?)
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« Algorithm:
— Let IT be (d + 1,¢,0.1)-subspace embedding
— Solve x' = argmin ||[1Ax — IIb|]
e Theorem: ||Ax" — b|| < (1 + 3¢)||Ax™ — b]|
* Proof:
— ||[ITAx —11b]| = [[TI(Ax — b)||
— P={Ax —b | x € R is a (subset of a) d + 1 dimensional
linear subspace of R"

— Hence II preserves the norm of all Ax — b
* Up to 1 + € approximation each
» with 90% probability (overall)

1) ||TAx* = TIb|| < (1 + €)||Ax™ — b]|

2) [|TTAx —TIb|| = (1 — €)||Ax — b]| for any x

Hence ||Ax’ — b|| < =5 ||Ax* — b]|
1—€
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Time:

— 0(nd?®™Y) = 0(kd®™ 1) = 0.(d?)

— Plus time to multiply by IT: 0(ndk) = 0.(nd?)
* This is worse than before in fact...

Can apply Fast dimension reduction!

— Reduce time to:
» 0(d-(n-logn+d3)) =0(nd - logn+d%)
 First term near optimal

Can do even faster:

— Exist IT with 1 non-zero/column with k = 0(d?/e?)
« Exactly the one from problem 1 on PS2 !

— Time becomes: O.(nnz(A4) + d>)

[Sarlos’06, Clarkson-Woodruff’13, Meng-
Mahoney’13, Nelson-Nguyen’13]
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Metric embeddings
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Problem: Compute the diameter of a set S, of
size n, living in d-dimensional £¢

— Say, ford = 2
Trivial solution: 0(dn?) time
Will see: 0(29%n) time
Algorithm has two steps:

1. Map f:#¢ - &, where k = 29 such that, for any
x,yetd

* llx =yl = If &) = FOlw
2. Solve the diameter problem in ¢, on set f(S)

. L

O
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« Want map f: ¥, —» £ such that for x, ye#¥;
~ Jlx=vyl: = If& -

« Define f(x) as follows:
— 2% coordinates indexed by b = (b,b, ...bg) (binary representation)

- f()p = X;(=1)% - x
- Claim: |[f) —fO o= |x—y|-

[7G) =D = maxy (—1ype - (e = 72)
= %, max(-1)? (x; - )

=i lxi — yil
= |lx =yl
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Claim: can compute diameter of n points living in
2% in 0(nk) time.

* Proof:
diameter(S)= max ||p — q9]|w
D,qES
= max max —
M 1Py — Qb
= max max —
X 0 |Pp — b
= max(maxp; — min
< (pES Pb qEqu)

* Hence, can compute in O(k - n) time.

« Combining the two steps, we have 0(2¢ - n) time
for computing diameter in £¢
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» General motivation: given distance
(metric) M, solve a computational
problem P under M

Hamming distance, ¥4

Compute distance between two points

Euclidean distance (#,) Nearest Neighbor Search
Edit distance between two strings Diameter/Close-pair of set S
Earth-Mover (transportation) Distance Clustering, MST, etc

f

 -‘ Reduce problem
| <P under hard metric>

AP under simpler metric




« Definition: an embedding is a map f: M—H of a metric (M, d,,;) into a
host metric (H, py) such that for any x, yeM:

dux,y) = Pu(f(x), f(y) =D - du(x,y)
where D is the distortion (approximation) of the embedding f.

« Embeddings come in all shapes and colors:
— Source/host spaces M, H
— Distortion D
— Can be randomized: p,(f(x), f(v)) = d,(x,y) with 1 — 5 probability
— Time to compute f(x)

. Types of embeddings:
From norm to the same norm but of lower dimension (dimension reduction)
— From one norm (¥,) into another norm (#,)
— From non-norms (edit distance, Earth-Mover Distance) into a norm (¢,)
— From given finite metric (shortest path on a planar graph) into a norm (¢,)
— H not a metric but a computational procedure « sketches

COLUMBIA |[ENGINEERING

The Fu Foundation School of Engineering and Applied Science



«  Theorem: can embed ¢4 into £¥ for k = 0 (Ed—z) and distortion 1 + ¢

— Map: F(x) = %Gx for G = Gaussian k x d

* Proof:
— ldea similar to dimension reduction in #,:
— Claim: for any points x,y € R%, let § = ||x — y||,, then:

. Pr [||F(x)—6F(y)||1 c(l—el+ E)] S 1 — o-0(eK)
— Proof:

+ F()—F() =G~y

» Distributed as %(gl& 926, ..., Gi.6)

1
* Hence ||[F(x) = F()Il, = &6 - Xilgil
— (in dimension reduction we had %Zigiz )

« Also can prove that: %Zilgil = 1 + € with probability at least 1 — e~k

— Now apply the same argument as in subspace embedding to argue for
the entire space R? as long as k > Q(d/€?)

* Morale: ¢, is at least as “large/hard” as ¢,
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« Can we embed ¢, into £, with good approximation?
— No!
 [Enflo’69]: embedding {0,1}¢ into £, (any dimension) must
incur vd distortion
* Proof:
— Suppose f is the embedding of {0,1}¢ into 4,
— Two distributions over pairs of points x,y € {0,1}¢:
« Fixrandomandy=x@ 1
« C: x =y @ e; for random y and index i
— Two steps:

+ Ec|llx =yl | < 1/d - B [|1x - y1[]
E, [||f(x) _f(y)||§] >1/d-Ep [||f(x) —f(Y)||§] ‘

—_(short diagonals)

— Implies Q(vd) lower bound!
* Morale: ¢, is strictly larger than ¢, !
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E.g, Earth-Mover Distance
Definition:
— Given two sets 4, B of points in a metric space

— EMD(A, B) = min cost bipartite matching between
Aand B

Which metric space?
— Can be plane, ¥,, ;...

Applications in image vision
®---0
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