Lecture 12:

More LSH
Data-dependent hashing

Announcements & Plan

- PS3:
 - Released tonight, due next Fri 7pm
- Class projects: think of teams!
- I'm away until Wed
 - Office hours on Thu after class
- Kevin will teach on Tue
- Evaluation on courseworks next week
- LSH: better space
- Data-dependent hashing
 - Scriber?

Time-Space Trade-offs (Euclidean)

space	query					
	time	Space	Time	Comment	Reference	
		$\approx n$	n^{σ}	$\sigma = 2.09/c$	[Ind'01, Pan'06]	
low	high			$\sigma = O(1/c^2)$	[Al'06]	
		$n^{1+\rho}$	$n^{ ho}$	$\rho = 1/c$	[IM'98, DIIM'04]	
medium	medium			$\rho = 1/c^2$	[Al'06]	
				$\rho \ge 1/c^2$	[MNP'06, OWZ'11]	
			ω(1) memo		[PTW'08, PTW'10]	
1 mem lookup						
high	low	n^{4/ϵ^2}	$O(d \log n)$	$c = 1 + \epsilon$	[KOR'98, IM'98, Pan'06]	
ingii	low					

ω(1) memory lookups

[AIP'06]

Near-linear Space for $\{0,1\}^d$

[Indyk'01, Panigrahy'06]

Sample a few buckets in the same hash table!

Setting:

- Close:
$$r = \frac{d}{2c} \Rightarrow P_1 = 1 - \frac{1}{2c}$$

- Far:
$$cr = \frac{d}{2} \Rightarrow P_2 = \frac{1}{2}$$

• Algorithm:

- Use one hash table with
$$k = \frac{\log n}{\log 1/P_2} = \alpha \cdot \ln n$$

- On query q:
 - compute $w = g(q) \in \{0,1\}^k$
 - Repeat $R = n^{\sigma}$ times:
 - w': flip each w_i with probability $1 P_1$
 - look up bucket g(w') and compute distance to all points there
 - If found an approximate near neighbor, stop

Near-linear Space

- Theorem: for $\sigma = \Theta\left(\frac{\log c}{c}\right)$, we have:
 - Pr[find an approx near neighbor] ≥ 0.1
 - Expected runtime: $O(n^{\sigma})$
- Proof:
 - Let p^* be the near neighbor: $||q p^*|| \le r$
 - $-w = g(q), t = ||w g(p^*)||_1$
 - Claim 1: $\Pr_g\left[t \le \frac{k}{c}\right] \ge \frac{1}{2}$
 - Claim 2: $\Pr_{g,w'} \left[w' = g(p) \mid ||q p||_1 \ge \frac{d}{2} \right] \le \frac{1}{n}$
 - Claim 3: $Pr[w' = g(p^*) | Claim 1] \ge 2n^{-\sigma}$
 - If $w' = g(p^*)$ at least for one w', we are guaranteed to output either p^* or an approx. near neighbor

Beyond LSH

Hamming space

Space	Time	Exponent	c=2	Reference	
$n^{1+\rho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98]	
		$\rho \ge 1/c$		[MNP'06, OWZ'11]	SECTION
$n^{1+\rho}$	$n^{ ho}$	$\rho \approx \frac{1}{2c-1}$	$\rho = 1/3$	[AINR'14, AR'15]	

Euclidean space

$n^{1+\rho}$	$n^{ ho}$	$\rho \approx 1/c^2$	$\rho = 1/4$	[Al'06]
		$\rho \ge 1/c^2$		[MNP'06, OWZ'11]
		_		_

$n^{1+\rho}$	$n^{ ho}$	$\rho \approx \frac{1}{2c^2 - 1}$	$\rho = 1/7$	[AINR'14, AR'15]
--------------	-----------	-----------------------------------	--------------	------------------

New approach?

Data-dependent hashing

- A random hash function, chosen after seeing the given dataset
- Efficiently computable

Construction of hash function

[A.-Indyk-Nguyen-Razenshteyn'14, A.-Razenshteyn'15]

Warning: hot off the press!

- Two components:
 - Nice geometric structure
 - data-dependent

has better LSH

Nice geometric structure

- Like a random dataset on a sphere
 - s.t. random points at distance $\approx cr$
- Query:

- At angle 45' from near-neighbor

Alg 1: Hyperplanes

[Charikar'02]

- Sample *unit* r uniformly, hash p into $sgn\langle r, p \rangle$
 - $-\Pr[h(p) = h(q)] = 1 \alpha / \pi,$
 - where α is the angle between p and q

•
$$P_2 = 1/2$$

• $\rho \approx 0.42$

Alg 2: Voronoi

[A.-Indyk-Nguyen-Razenshteyn'14] based on [Karger-Motwani-Sudan'94]

• Sample T i.i.d. standard ddimensional Gaussians

$$g_1, g_2, \ldots, g_T$$

• Hash p into

$$h(p) = argmax_{1 \le i \le T} \langle p, g_i \rangle$$

• T = 2 is simply Hyperplane LSH

Hyperplane vs Voronoi

- Hyperplane with k = 6 hyperplanes
 - Means we partition space into $2^6 = 64$ pieces
- Voronoi with $T = 2^k = 64$ vectors
 - $-\rho = 0.18$
 - grids vs spheres

NNS: conclusion

- 1. Via sketches
- 2. Locality Sensitive Hashing
 - Random space partitions
 - Better space bound
 - Even near-linear!
 - Data-dependent hashing even better
 - Used in practice a lot these days

The following was not presented in the lecture

Reduction to nice structure (HL)

 Idea: iteratively decrease the radius of minimum enclosing ball

- Algorithm:
 - find dense clusters
 - with smaller radius
 - large fraction of points
 - recurse on dense clusters
 - apply VoronoiLSH on the rest
 - recurse on each "cap"
 - eg, dense clusters might reappear

radius = 99cr

Hash function

 Described by a tree (like a hash table) radius = 100cr

Dense clusters

- Current dataset: radius R
- A dense cluster:
 - Contains $n^{1-\delta}$ points
 - Smaller radius: $(1 \Omega(\epsilon^2))R$
- After we remove all clusters:
 - For any point on the surface, there are at most $n^{1-\delta}$ points within distance $(\sqrt{2} \epsilon)R$ ϵ trade-off
 - The other points are essentially orthogonal!
- When applying Cap Carving with parameters (P_1, P_2) :
 - Empirical number of far pts colliding with query: $nP_2 + n^{1-\delta}$
 - As long as $nP_2 \gg n^{1-\delta}$, the "impurity" doesn't matter!

Tree recap

- During query:
 - Recurse in all clusters
 - Just in one bucket in VoronoiLSH
- Will look in >1 leaf!
- How much branching?
 - Claim: at most $(n^{\delta} + 1)^{O(1/\epsilon^2)}$
 - Each time we branch
 - at most n^{δ} clusters (+1)
 - a cluster reduces radius by $\Omega(\epsilon^2)$
 - cluster-depth at most $100/\Omega(\epsilon^2)$
- Progress in 2 ways:
 - Clusters reduce radius
 - CapCarving nodes reduce the # of far points (empiri δ trade-off
- A tree succeeds with probability $\geq n^{-\frac{1}{2c^2-1}-o(1)}$

Fast preprocessing

How to find the dense clusters fast?

- Step 1: reduce to $O(n^2)$ time.
 - Enough to consider centers that are data points
- Step 2: reduce to near-linear time.
 - Down-sample!
 - Ok because we want clusters of size $n^{1-\delta}$
 - After downsampling by a factor of \sqrt{n} , a cluster is still somewhat heavy.

Other details

- In the analysis,
 - Instead of working with "probability of collision with far point" P_2 , work with "empirical estimate" (the actual number)
 - A little delicate: interplay with "probability of collision with close point", P_1
 - The empirical P_2 important only for the bucket where the query falls into
 - Need to condition on collision with close point in the above empirical estimate
 - In dense clusters, points may appear inside the balls
 - whereas VoronoiLSH works for points on the sphere
 - need to partition balls into thin shells (introduces more branching)

