Lecture 12:

More LSH
Data-dependent hashing
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e PS3:

— Released tonight, due next Fri 7pm
» Class projects: think of teams!

* I’m away until Wed
— Office hours on Thu after class

 Kevin will teach on Tue
 Evaluation on courseworks next week

« LSH: better space

« Data-dependent hashing
— Scriber?
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Space |Time Comment Reference

~n no o = 2_()9/(; [Ind’01, Pan’006]
o=0(1/c?) |[AIrog]

nl+p nP p=1/c [IM'98, DIIM’04]
p=1/c? [AI'06]
p=>1/c? [IMNP’06, OWZ’11]

nlto(1/c?) w(1) memﬂxlookups [PTW’08, PTW’10]

ymem 100K

ntle? [ OkdHTET) |c=1+¢€ |[KOR'98, IM'98, Pan'06]
no/€?) | w(1) memory lookups [AIP06]
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[Indyk’01, Panigrahy’06]
Sample a few buckets in the

same hash table!

« Setting:

d 1
— Close: r=—=>P,=1——
2Cc 2c

« Algorithm:
— Use one hash table with k = 101;‘?713 —a-lnn
2

— On query gq:
- compute w = g(q) € {0,1}*
* Repeat R = n? times:
— w': flip each w; with probability 1 — P,
— look up bucket g(w") and compute distance to all points there

« If found an approximate near neighbor, stop
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log c
C
— Pr[find an approx near neighbor]> 0.1

— Expected runtime: 0(n?)

* Proof:
— Let p* be the near neighbor: ||g —p*|| < r

-w=g(q), t=|lw—g®)lh
— Claim 1: Pr, [t S%] 2%

: , d 1
— Claim 2: Prg,w,[w = g(p) | IIq—plllzgl <=

— Claim 3: Pr[w’ = g(p*) | Claim 1] = 2n™°

— If w' = g(p*) at least for one w', we are guaranteed
to output either p* or an approx. near neighbor

 Theorem: for o = @( ), we have:
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Hamming
space

Euclidean
space

=

Space |Time |Exponent c=2 Reference
nttP | nf p=1/c p=1/2|[M98]
p=1/c [MNP’06, OWZ’11]
nttP |nP 1 p = 1/3 | [AINR'14, AR'15]
P = oc—1
nttP | nP p=1/c? |p=1/4|[Aros]
p=>1/c? [MNP’06, OWZ’11]
nttP | nP 1 |p=1/7 |IAINR'14, AR'15]
P =221
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I Data-dependent hashing I

* Arandom hash "
function, chosen E;ég
after seeing the "\\\‘
given dataset %;‘!‘%"

» Efficiently gfl‘:”ﬂ
computable . '
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[A.-Indyk-Nguyen-Razenshteyn’14, A.-Razenshteyn’15]

« Warning: hot off the press!

* Two components:

— Nice geometric structure 4= has better LSH
— Reduction to such structure ¢ data-dependent
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» Like a random dataset on a sphere
—s.t. random points at distance = cr

* Query:
— At angle 45’ from near-neighbor
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[Charikar’02]

* Sample unitr uniformly, hash p
into sgn(r, p)

—Prlh(p) = h(q)] = 1-a/m,
— where « is the angle between p and g

1.00
® P1 — 3/4
PY PZ — 1/2 0.75
¢« p = 0.42
0.25
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[A.-Indyk-Nguyen-Razenshteyn’14] based on [Karger-Motwani-Sudan’94]

e Sample T i.i.d. standard d-
dimensional Gaussians

91,92, - 9t
* Hashpinto

h(p) = argmax,<i<r(p, 9:)

e T = 2 issimply Hyperplane LSH

COLUMBIA ENGINEERING .

The Fu Foundation School of Engineering and Applied Science



» Hyperplane with k = 6 hyperplanes
— Means we partition space into 2° = 64 pieces

« Voronoi with T = 2k = 64 vectors

- p =0.18 . K=6Vs.T=64
— grids vs spheres

0.75

0.50

0.25

query near far
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* 1. Via sketches

« 2. Locality Sensitive Hashing
— Random space partitions

— Better space bound
 Even near-linear!

— Data-dependent hashing even better
* Used in practice a lot these days
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* The following was not presented in the
lecture
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e |dea:

iteratively decrease the radius of
minimum enclosing ball

« Algorithm:
— find dense clusters
« with smaller radius .

« large fraction of points
— ‘apply VoronoilSH on the resti
* recurse on each “cap”

* eg, dense clusters might
reappear *

Why ok?

no dense clusters

like “random dataset”
with radius=100cr

3

even better!

v
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* Described by a tree (like a hash table)

ragius = 100cr
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Current dataset: radius R
A dense cluster:

— Contains n' 9 points

— Smaller radius: (1 — Q(e?))R
After we remove all clusters;

— For any point on the surface, there are at most
points within distance (v2 — e)R c trade-off ]

— The other points are essentially orthogonal !
When applymg Cap Carving with parameters

(1'

— Er1n|(as1r1cal number of far pts collidi
1
— As long as nP, >» n'79,the “impurity” doesn’t matter! 2

trade-off ]
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« During query:
— Recurse in all clusters
— Just in one bucket in VoronoilLSH
* Will look in >1 leaf!

* How much branching?

— Claim: at most (n° + 1)

— Each time we branch

. at most n? clusters (+1)
« a cluster reduces radius by Q(€?)
« cluster-depth at most 100/Q(e?)

* Progress in 2 ways:
— Clusters reduce radius
— CapCarving nodes reduce the # of far points (empiri 6 trade-off ]

1
« A tree succeeds with probability > n 2z )

0(1/€"
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« Step 1: reduce to 0(n%) tim
— Enough to consider centers tihat
are data points

» Step 2: reduce to near-linear time.
— Down-sample!
— Ok because we want clusters of size n!~

— After downsampling by a factor of v/n, a

cluster is still somewhat heavy.
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In the analysis,

— Instead of working with “probability of collision
with far point” P,, work with “empirical
estimate” (the actual number)

— A little delicate: interplay with “probability of
collision with close point”, P,

* The empirical P, important only for the bucket where
the query falls into

* Need to condition on collision with close point in the
above empirical estimate

— In dense clusters, points may appear inside the
balls
« whereas VoronoiLSH works for points on the sphere

* need to partition balls into thin shells (introduces
more branching)
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