
11

Lecture 5:

Precision Sampling (cont),

Streaming for Graphs

Plan

• Precision Sampling (continuation)

• Streaming for graphs

• Scriber?

2

Precision Sampling: Algorithm

• Precision Sampling Lemma: can get with
90% success:
– O(1) additive error and 1.5 multiplicative error:

𝑆/1.5 − 𝑂 1 < 𝑆 < 1.5 ⋅ 𝑆 + 𝑂(1)

– with average cost equal to 𝑂(log 𝑛)

• Algorithm:
– Choose each 𝑢𝑖𝐸𝑥𝑝(1) i.i.d.

– Estimator: 𝑆 = max
𝑖

 𝑎𝑖/𝑢𝑖.

• Proof of correctness:

– Claim 1: max𝑎𝑖/𝑢𝑖 ∼ ∑𝑎𝑖/𝐸𝑥𝑝(1)

• Hence, max 𝑎𝑖/𝑢𝑖 =
∑𝑎𝑖

𝐸𝑥𝑝 1
± 1

– Claim 2: Avg cost =𝑂(log𝑛)

3

𝐸𝑥𝑝(1) ∼ 𝑒−𝑥

𝑝-moments via Prec. Sampling
• Theorem: linear sketch for 𝑝-moment with

𝑂(1) approximation, and 𝑂(𝑛1−2/𝑝 log𝑂(1) 𝑛)
space (with 90% success probability).

• Sketch:
– Pick random 𝑟𝑖{±1}, and 𝑢𝑖 ∼ 𝐸𝑥𝑝(1)

– let 𝑦𝑖 = 𝑓𝑖 ⋅ 𝑟𝑖/𝑢𝑖
1/𝑝

– Hash into a hash table 𝑆,

𝑤 = 𝑂(𝑛
1−

2

𝑝 log𝑂 1 𝑛) cells

• Estimator:

– max
𝑗

𝑆 𝑗 𝑝

• Sketch 𝑆 is linear

4

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

𝑦𝟏

+ 𝑦𝟑

𝑦𝟒 𝑦𝟐

+ 𝑦𝟓

+ 𝑦𝟔

𝑓 =

𝑆 =

𝑢 ∼ 𝑒−𝑢

Correctness of estimation
• Theorem: max

𝑗
𝑆 𝑗 𝑝 is 𝑂(1)

approximation with 90%
probability, with

𝑤 = 𝑂(𝑛1−2/𝑝 log𝑂 1 𝑛) cells

• Proof:
– Use Precision Sampling Lem.

– 𝑎𝑖 = 𝑓𝑖
𝑝

• ∑𝑎𝑖 = ∑ 𝑓𝑖
𝑝 = 𝐹𝑝

– 𝑎𝑖/𝑢𝑖 = 𝑆 ℎ 𝑖 𝑝

– Need to show |𝑎𝑖 − 𝑎𝑖| small

• more precisely:
 𝑎𝑖

𝑢𝑖
−

𝑎𝑖

𝑢𝑖
≤ 𝜖𝐹𝑝

5

Algorithm PrecisionSamplingFp:

Initialize(w):
array S[w]
hash func ℎ, into [w]
hash func 𝑟, into {±1}
reals 𝑢𝑖, from 𝐸𝑥𝑝 distribution

Process(vector 𝑓 ∈ ℜ𝑛):
for(i=0; i<n; i++)

S[ℎ(𝑖)] += 𝑓𝑖 ⋅
𝑟𝑖

𝑢𝑖
1/𝑝;

Estimator:
max

𝑗
𝑆[𝑗] 𝑝

Correctness 2

• Claim: 𝑆 ℎ 𝑖 𝑝 − 𝑓𝑖
𝑝
/𝑢𝑖 ≤ 𝑂(𝜖𝐹𝑝)

• Consider cell 𝑧 = ℎ(𝑖)

– 𝑆 𝑧 =
𝑓𝑖𝑟𝑖

𝑢𝑖
1/𝑝 + 𝐶

• How much chaff 𝐶 is there?

– 𝐶 = ∑𝑗≠𝑖∗ 𝑦𝑗 ⋅  ℎ 𝑗 = 𝑧

– 𝐸 𝐶2 = ⋯ ≤ ||𝑦||2/𝑤
– What is ||𝑦||2 ?

• 𝐸𝑢||𝑦||2 ≤ ||𝑓||2 ⋅ 𝐸
1

𝑢2/𝑝 = ||𝑓||2 ⋅ 𝑂 log 𝑛

– ||𝑓||2 ≤ 𝑛1−2/𝑝||𝑓||𝑝
2

– By Markov’s: 𝐶2 ≤ ||𝑓||𝑝
2 ⋅ 𝑛1−2/𝑝 ⋅ 𝑂(log 𝑛)/𝑤 with probability >90%

• Set 𝑤 =
1

𝜖2/𝑝 𝑛1−2/𝑝 ⋅ 𝑂(log 𝑛), then

– 𝐶 𝑝 ≤ ||𝑓||𝑝
𝑝

⋅ 𝜖 = 𝜖𝐹𝑝

6

𝑦𝑖 = 𝑓𝑖 ⋅ 𝑟𝑖/𝑢𝑖
1/𝑝

where 𝑟𝑖{±1}
𝑢𝑖 exponential r.v.

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

𝑦𝟏

+ 𝑦𝟑

𝑦𝟒 𝑦𝟐

+ 𝑦𝟓

+ 𝑦𝟔

𝑆 =

Correctness (final)

• Claim: 𝑆 ℎ 𝑖 𝑝 − 𝑓𝑖
𝑝
/𝑢𝑖 ≤ 𝑂(𝜖𝐹𝑝)

• 𝑆 ℎ 𝑖 𝑝 =
𝑓𝑖

𝑢
𝑖
1/𝑝 + 𝐶

𝑝

– where 𝐶 = ∑𝑗≠𝑖∗ 𝑦𝑗 ⋅  ℎ 𝑗 = ℎ(𝑖)

• Proved:

– 𝐸 𝐶2 ≤ ||𝑦||2/𝑤
– this implies 𝐶𝑝 ≤ 𝜖𝐹𝑝 with 90% for fixed 𝑖

– But need for all 𝑖 !

• Want: 𝐶2 ≤ 𝛽||𝑦||2/𝑤 with high probability
for some smallish 𝛽
– Can indeed prove for 𝛽 = 𝑂(log2 𝑛) with strong

concentration inequality (Bernstein).

7

Recap: frequency moments

• 𝑝-moment for 𝑝 > 2

– Via Precision Sampling

• Estimate of sum from poor estimates

8

∞0 1 2

Distinct count [AMS’96] Tug-Of-War

Precision Sampling

Not possible

Proxy: heavy hitters

CountSketch

later in class

complexity

𝑂𝜖(log 𝑛) 𝑂𝜖 𝑛1−2/𝑝 log 𝑛

99

Streaming for Graphs

Streaming for Graphs

• Graph 𝐺

– 𝑛 vertices

– 𝑚 edges

• Stream:

list of edges

(e.g., on a hard drive)

10

(,) (,) (,) (,) (,) (,)

11

Graphs

• Web

• Social graphs

• Phone calls

• Maps

• Geographical data

• …

Why streaming for graphs?

• Want to run graph algorithms

– graph stored on hard drive

– A linear scan on hard MUCH

more efficient than random

access

– Usual algorithms are usually

random-access

• think Breadth-First-Search

12

(,) (,)(,) (,) (,) (,)

For which problems?

• Most of usual-suspect algorithms use random-
access

• Questions:
– Connectivity

– Distances (similarities) between nodes

– PageRank (stationary distribution of random walk)

– Counting # of triangles (measure of clusterability)

– Various other statistics

– Matchings

– Graph partitioning

– …

13

14

Parameters for graph algorithms

• Size of the workspace:

– Aim: to use ~𝑛 space

• or O(𝑛 ⋅ log 𝑛)

• Still much less than 𝑚 (that could be up to 𝑛2)

– ≪ 𝑛 is usually not achievable

E.g., for web can have

𝑛 = 1 ⋅ 109 nodes

𝑚 = 100 ⋅ 109 edges

Problem 1: connectivity
• Check whether the graph is connected?

– in 𝑂(𝑛) space

• Idea:
– Store minimum spanning tree

• Algorithm:
– Keep a subgraph 𝐻 (starts empty)

– when see an edge (𝑖, 𝑗):
• If (𝑖, 𝑗) does not create a cycle in 𝐻, add it to 𝐻

– Space: ≤ 𝑛 − 1 edges only

• Can use 𝐻 for:
– Connectivity between 2 nodes

– # connected components

15

Problem 2: distance

• Given 𝑠, 𝑡, compute the distance between
them

– Up to approximation 𝛼, odd integer

• Modification of the previous algorithm:

– Keep a subgraph 𝐻

– On edge (𝑖, 𝑗): if 𝑑𝐻(𝑖, 𝑗) > 𝛼, add (𝑖, 𝑗) to 𝐻

• Space?

– All cycles in 𝐻 have length ≥ 𝛼 + 2

– Thm [Bollobas]: then 𝐻 ≤ 𝑂 𝑛1+
2

𝛼+1

• Few other results known!

16

Detour: Bollobas Theorem

• Thm [Bollobas]: If all cycles of length ≥ 𝛼 +

2 then 𝐻 ≤ 𝑂 𝑛1+
2

𝛼+1

• Simplified case: all nodes of degree 𝑑

• Proof:
– Suppose: 𝛼 = 2𝑘 − 1

– Explore a vertex 𝑣

– At depth 𝑘: all nodes differ!

– Hence 𝑑𝑘 ≤ 𝑛

– Or 𝑑 ≤ 𝑛1/𝑘

– 𝑚 ≤ 𝑛1+1/𝑘 = 𝑛1+
2

𝛼+1

17

