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Variational Inference in a Nutshell

Approx intractable pθ(z , x) w/ tractable qφ(z |x)

⇒ Trade integration for optimization

Exploit hidden symmetry

⇒ Duality: argmin
θ,φ

DKL (qφ(z |x)||pθ(z |x)) ≡ argmax
θ,φ

LELBO
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log ẐSMC

]

LSMC is a biased estimator for log pθ(x), bias is O(K−1)



Variational Objectives

Weighting samples by ratio p/q corrects for approximation
⇒ Bias proposal towards true posterior

wk
t :=

f (zkt |z
akt−1

t−1 )g(xt |zkt )

q(zkt |z
akt−1

t−1 , xt)

SMC constructs filtered estimate of log pθ(x) and objective:
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log ẐSMC

]
LSMC is a biased estimator for log pθ(x), bias is O(K−1)



Particle Smoothing

Forward Filtering Backward Simulation (Godsill, 2004):

p(z1:T |x1:T ) = p(zT |x1:T )
T−1∏
t=1

p(zt |zt+1:T , x1:T ) ,

Samples drawn from continuous q in forward pass

Backward pass performs discrete resampling/reweighting

⇒ Limits expressiveness of variational family.



Particle Smoothing

Forward Filtering Backward Simulation (Godsill, 2004):

Samples drawn from continuous q in forward pass

Backward pass performs discrete resampling/reweighting

⇒ Limits expressiveness of variational family.



Particle Smoothing

Forward Filtering Backward Simulation (Godsill, 2004):

Continuous samples drawn from q in forward pass.

Backward pass only performs resampling.

⇒ Limits expressiveness of variational family.



Particle Smoothing

Forward Filtering Backward Simulation (Godsill, 2004):

Continuous samples drawn from q in forward pass.

Backward pass only performs resampling.

⇒ Limits expressiveness of variational family.



Particle Smoothing Variational Objectives

Can we use smoothing posterior to design a continuous-domain
backward proposal?

Design q to approx p w/ self-normalized importance sampling.

⇒ Sample subparticles and compute subweights.

Sample subparticle index w/ prob proportional to subweight

Yields i.i.d. sample trajectories and smooth objective.



Particle Smoothing Variational Objectives

Can we use smoothing posterior to design a continuous-domain
backward proposal?

p(z1:T |x1:T ) = p(zT |x1:T )
T−1∏
t=1

p(zt |zt+1:T , x1:T )

Design q to approx p w/ self-normalized importance sampling

Sample subparticles and compute subweights.

Sample subparticle index w/ prob proportional to subweight

Yields i.i.d. sample trajectories and smooth objective.



Particle Smoothing Variational Objectives

Can we use smoothing posterior to design a continuous-domain
backward proposal?

p(z1:T |x1:T ) = p(zT |x1:T )
T−1∏
t=1

p(zt |zt+1:T , x1:T )

Design q to approx p w/ self-normalized importance sampling

Sample subparticles and compute subweights.

Sample subparticle index w/ prob proportional to subweight

Yields i.i.d. sample trajectories and smooth objective.



Particle Smoothing Variational Objectives

Can we use smoothing posterior to design a continuous-domain
backward proposal?

p(z1:T |x1:T ) = p(zT |x1:T )
T−1∏
t=1

p(zt |zt+1:T , x1:T )

Design q to approx p w/ self-normalized importance sampling

⇒ Subsample subparticles and compute subweights.

Sample subparticle index w/ prob proportional to subweight

Yields i.i.d. sample trajectories and smooth objective.



Particle Smoothing Variational Objectives

Can we use smoothing posterior to design a continuous-domain
backward proposal?

p(z1:T |x1:T ) = p(zT |x1:T )
T−1∏
t=1

p(zt |zt+1:T , x1:T )

Design q to approx p w/ self-normalized importance sampling

⇒ Subsample subparticles and compute subweights.

Select subparticle index w/ prob proportional to subweight

Yields i.i.d. sample trajectories and smooth objective.



Particle Smoothing Variational Objectives

Can we use smoothing posterior to design a continuous-domain
backward proposal?

p(z1:T |x1:T ) = p(zT |x1:T )
T−1∏
t=1

p(zt |zt+1:T , x1:T )

Design q to approx p w/ self-normalized importance sampling

⇒ Subsample subparticles and compute subweights.

Select subparticle index w/ prob proportional to subweight

Yields i.i.d. sample trajectories and smooth objective.



Particle Smoothing Variational Objectives

Define continuous-domain backward proposal

q(zt |zt+1, x1:T )

Sample M subparticles for each k ∈ {1, · · · ,K}

z̃k,1:Mt ∼ q(zt |z̃kt+1, x1:T )

Use samples to define subweights:

ωk,m
t|T = p(z̃k,mt |z̃

k,m
t+1, x1:T )

∝
∫

p(zt−1, z̃
k,m
t |x1:t−1)dzt−1

f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )

≈

 K∑
j=1

w̄ j
t−1f (z̃k,mt |z

j
t−1)

 f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )
.



Particle Smoothing Variational Objectives

Define continuous-domain backward proposal

q(zt |zt+1, x1:T )

Sample M subparticles for each k ∈ {1, · · · ,K}

z̃k,1:Mt ∼ q(zt |z̃kt+1, x1:T )

Use samples to define subweights:

ωk,m
t|T = p(z̃k,mt |z̃

k,m
t+1, x1:T )

∝
∫

p(zt−1, z̃
k,m
t |x1:t−1)dzt−1

f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )

≈

 K∑
j=1

w̄ j
t−1f (z̃k,mt |z

j
t−1)

 f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )
.



Particle Smoothing Variational Objectives

Define continuous-domain backward proposal

q(zt |zt+1, x1:T )

Sample M subparticles for each k ∈ {1, · · · ,K}

z̃k,1:Mt ∼ q(zt |z̃kt+1, x1:T )

Use samples to define subweights:

ωk,m
t|T = p(z̃k,mt |z̃

k,m
t+1, x1:T )

propto

∫
p(zt−1, z̃

k,m
t |x1:t−1)dzt−1

f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )

≈

 K∑
j=1

w̄ j
t−1f (z̃k,mt |z

j
t−1)

 f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )
.



Particle Smoothing Variational Objectives

Define continuous-domain backward proposal

q(zt |zt+1, x1:T )

Sample M subparticles for each k ∈ {1, · · · ,K}

z̃k,1:Mt ∼ q(zt |z̃kt+1, x1:T )

Use samples to define subweights:

ωk,m
t|T = p(z̃k,mt |z̃

k,m
t+1, x1:T )

∝
∫

p(zt−1, z̃
k,m
t |x1:t−1)dzt−1

f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )

≈

 K∑
j=1

w̄ j
t−1f (z̃k,mt |z

j
t−1)

 f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )
.



Particle Smoothing Variational Objectives

Define continuous-domain backward proposal

q(zt |zt+1, x1:T )

Sample M subparticles for each k ∈ {1, · · · ,K}

z̃k,1:Mt ∼ q(zt |z̃kt+1, x1:T )

Use samples to define subweights:

ωk,m
t|T = p(z̃k,mt |z̃

k,m
t+1, x1:T )

∝
∫

p(zt−1, z̃
k,m
t |x1:t−1)dzt−1

f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )

≈

 K∑
j=1

w̄ j
t−1f (z̃k,mt |z

j
t−1)

 f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )
.



Particle Smoothing Variational Objectives

Define continuous-domain backward proposal

q(zt |zt+1, x1:T )

Sample M subparticles for each k ∈ {1, · · · ,K}

z̃k,1:Mt ∼ q(zt |z̃kt+1, x1:T )

Use samples to define subweights:

ωk,m
t|T = p(z̃k,mt |z̃

k,m
t+1, x1:T )

∝
∫

p(zt−1, z̃
k,m
t |x1:t−1)dzt−1

f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )

≈

 K∑
j=1

w̄ j
t−1f (z̃k,mt |z

j
t−1)

 f (z̃kt+1|z̃
k,m
t )g(xt |z̃k,mt )

q(z̃k,mt |z̃kt+1, x1:T )
.



Particle Smoothing Variational Objectives

Construct estimator ẐSVO and smoothing variational objective:
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(xt+k − x̂t+k)2 , R2
k = 1− MSEk∑T−k

t=0 (xt+k − x̄)2
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Take 1D observation forming partially observable system

xt = N (z1, σ
2)

⇒ Filtering cannot infer initial point from 1D observation.



Particle Smoothing Variational Objectives: FHN

Inferred hidden trajectories and dynamics topologically similar
with ground truth

ż1 = z1 − z31/3− z2

ż2 = a(bz1 − cz2)
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Particle Smoothing Variational Objectives: Lorenz

Define 10D nonlinear observations for dimension reduction

ż1 = σ(z2 − z1)

ż2 = z1(ρ− z3)− z2

ż3 = z1z2 − βz3



Particle Smoothing Variational Objectives: Lorenz

Tighter bounds logZSVO → log pθ(x1:T ) as K ,M increase

ż1 = σ(z2 − z1)

ż2 = z1(ρ− z3)− z2

ż3 = z1z2 − βz3



Particle Smoothing Variational Objectives: Lorenz

LSVO consistently outperforms LSMC with fewer particles

ż1 = σ(z2 − z1)

ż2 = z1(ρ− z3)− z2

ż3 = z1z2 − βz3
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VI is a tradeoff b/t tractability of qφ(z1:T |x1:T ) vs
expressiveness of pθ(z1:T , x1:T )

LSVO convergence when sharing variational parameters b/t
proposal and target

LSVO convergence
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VI is a tradeoff b/t tractability of qφ(z1:T |x1:T ) vs
expressiveness of pθ(z1:T , x1:T )

If variational family is limited, training both θ and φ can pull
pθ(z1:T , x1:T )→ qφ(z1:T |x1:T )
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Particle Smoothing Variational Objectives: LSVO

LSVO convergence when sharing f (zt |ψ(zt−1)) b/t qφ and pθ



Particle Smoothing Variational Objectives: LSVO

Slower convergence of LSVO and lower values for separate
transition parameters.



Particle Smoothing Variational Objectives: LSVO

A closer look at LSVO convergence when K = 16.

⇒ Faster convergence w/ shared parameters



Particle Smoothing Variational Objectives: Allen

Electrophysiology data of individual neurons from mouse
visual cortex downloaded from Allen Brain Atlas.



Particle Smoothing Variational Objectives: Allen

Download 30 trials of neuronal spiking from input current.



Particle Smoothing Variational Objectives: Allen

10-millisecond prediction captures depolarization and
hyperpolarization nonlinearities.



Particle Smoothing Variational Objectives: Allen

SVO outperforms filtered objectives and linear systems.
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Takeaways

PSVO:

Consistently outperforms filtered objectives.

Learns nonlinear transition and emission functions from
partially observable systems.

Augments backward proposal support and boosts particle
diversity.

Well-motivated variational objective LSVO from a consistent
and unbiased likelihood estimate.



Thank You

Implementation and datasets for experiments online:

⇒ https://github.com/amoretti86/PSVO

Thanks to Christian Naesseth and Daniel Hernandez for
helpful discussions

https://github.com/amoretti86/PSVO
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