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ABSTRACT

Bayesian phylogenetic inference is often conducted via local or sequential search
algorithms such as random-walk Markov chain Monte Carlo or Combinatorial Se-
quential Monte Carlo. These methods sample tree topologies and branch lengths,
however when performing evolutionary parameter learning, they require long runs
with inefficient state space exploration. Here we introduce Variational Combina-
torial Sequential Monte Carlo (VCSMC), a novel Variational Inference method that
simultaneously performs both parameter inference and model learning. VCSMC
uses sequential search to construct a variational objective defined on the compos-
ite space of phylogenetic trees. We show that VCSMC is computationally effi-
cient and explores higher probability spaces when compared with state-of-the-art
Hamiltonian Monte Carlo methods.

1 INTRODUCTION

Bayesian phylogenetic inference plays a central role in molecular evolutionary biology due to its
ability to represent evolutionary uncertainty and incorporate prior information. Inference often in-
volves three distinct tasks: (i) sampling from a discrete distribution to approximate an intractable
summation over tree topologies, (ii) for each tree, integrating over the continuous parameters and
branch lengths that govern the evolutionary model of interest, and (iii) performing parameter es-
timation or model learning. The sampling of tree topologies and branch lengths is typically ac-
complished via local search algorithms such as random-walk Markov chain Monte Carlo (Huelsen-
beck & Ronquist, 2001) or sequential search algorithms such as Combinatorial Sequential Monte
Carlo (Bouchard-Côté et al., 2012). Sophisticated proposal methods based on Hamiltonian Monte
Carlo or particle MCMC have been suggested to sample from composite spaces and infer evolution-
ary parameters (Dinh et al., 2017; Wang et al., 2015; Wang & Wang, 2020), however these methods
are often difficult to implement, slow to converge and heavily dependent upon heuristics.

Variational Inference (VI) is a computationally efficient alternative to MCMC that simultaneously
performs both inference and model learning. VI posits an approximate distribution and then re-
covers parameters of both the model and approximation by maximizing a lower bound to the log
marginal likelihood. One approach to learning variational distributions on phylogenetic trees is to
parameterize a tree as a sequence of subsplits, or ordered partitions on clades (Zhang & Matsen IV,
2018) and to recast the problem as a Bayesian network. One drawback of this setup is that the
support of the conditional probability tables scales exponentially with the number of taxa (Zhang
& Matsen IV, 2019). A body of recent work has established connections between VI and sequen-
tial search by defining a variational family of distributions on hidden Markov models, where Se-
quential Monte Carlo is used as the marginal likelihood estimator (Le et al., 2018; Naesseth et al.,
2018; Moretti et al., 2019c; 2020). Here we introduce Variational Combinatorial Sequential Monte
Carlo (VCSMC), a novel variational objective and structured approximate posterior defined on the
composite space of phylogenetic trees. Unlike standard variational SMC methods, our objective is
constructed from partial states where the likelihood is not directly available and where states are
formed by sampling from a large combinatorial set. VCSMC provides suitable estimates of the pos-
terior when applied to a benchmark dataset of primate mitochondrial DNA and performs favorably
when compared with the state of the art HMC methods.
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2 BACKGROUND

Phylogenetic Trees We wish to infer a latent bifurcating tree that describes the evolutionary rela-
tionships among a set of observed molecular sequences. A phylogeny is defined by a tree topology τ
and a set of branch lengths B. A tree topology is defined as a connected acyclic graph (V,E) where
V is a set of vertices and E is a set of edges. Leaf nodes denote vertices of degree 1 and correspond
to observed taxa. Internal nodes designate vertices of degree 3 (one parent and two children) and
represent unobserved taxa (e.g. DNA bases of ancestral species). A special vertex called the root
node of degree 2 (two children) represents the common evolutionary ancestor of all taxa.

For each edge e ∈ E, we associate a branch length, denoted b(e) ∈ R>0, b(e) ∈ B. The branch
length captures the intensity of the evolutionary changes between two vertices. An ultrametric tree
is one with constant evolutionary rate along all paths from v to its descendants. Nonclock trees are
general trees that do not require ultrametric assumptions. In this work we focus on phylogenetic
inference methods for nonclock trees as these are most pertinent to biologists.

Bayesian Phylogenetic Inference Let Y = {Y1, · · · , YM} ∈ ΩNxM denote the observed molec-
ular sequences with characters in Ω of length M over N species. Bayesian inference requires spec-
ifying the prior density and likelihood function over tree topology τ , branch length set B and gener-
ative model parameters θ to write the joint posterior,

P (B, τ, θ|Y) =
P (Y|τ,B, θ)P (τ,B|θ)P (θ)

P (Y)
. (1)

The prior is uniform over topologies and a product of independent exponential distributions over
branch lengths with rate λbl. The evolution of each site is modeled independently using a continuous
time Markov chain with rate matrix Q. Let ζv,m denote the state of genome for species v at site m
and define the evolutionary model along branch b(v → v′):

P (ζv′,s = j|ζv,s = i) = exp (b(e)Qi,j) . (2)

The likelihood of a given phylogeny P (Y|τ,B, θ) =
M∏
i=1

P (Yi|τ,B, θ) can be evaluated in linear

time using the sum-product or pruning algorithm (Felsenstein, 1981), however the normalization
constant P (Y) requires marginalizing the (2N − 3)!! distinct topologies (Semple & Steel, 2003)
which is intractable.

Combinatorial Sequential Monte Carlo CSMC is a method to sample from a probability mea-
sure π̄ by performing inference on a sequence of increasing probability spaces (Wang et al., 2015).
The target measure π̄ and its normalization constant ‖π‖ corresponding to the numerator and de-
nominator in Eq. (1) are approximated by sequential importance resampling in R steps. Unlike
standard SMC methods, the target is defined on a combinatorial set (the space of tree topologies T ).
K sampled partial states (or particles) {sr,k}Kk=1 ∈ Sr are drawn at each rank r and used to form a
discrete positive measure,

πr,k = ‖πr−1,k‖
1

K

K∑
k=1

wr,kδs,k(s) ∀s ∈ S, (3)

where δs is the Kronecker delta and wr,k are the importance weights. Resampling ensures that
particles remain on areas of high probability mass. Each resampled state s̃r−1,k of rank r−1 is then
extended to a state of rank r by drawing from a proposal distribution sr,l ∼ ν+sr,k : S → [0, 1]. The
importance weights are computed as follows:

wr,k = w(s̃r−1,k, sr,k) =
π(sr,k)

π(s̃r−1,k)
·
ν−sr,k(s̃r−1,k)

ν+s̃r,k(sr,k)
, (4)

where ν−sr,k is a probability density over S correcting an over-counting problem (Wang et al.,
2015). The procedure is summarized in Algorithm 1 of the Appendix. An unbiased estimate for
the marginal likelihood can be constructed from the weights which converges in L2 norm,

ẐCSMC := ‖πR,K‖ =

R∏
r=1

(
1

K

K∑
k=1

wr,k

)
→ ‖π‖. (5)
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Variational Inference VI is a technique for approximating the posterior logPθ(B, τ |Y) when
marginalization of latent variables is not analytically feasible. By introducing a tractable distribution
Qφ(B, τ |Y) it is possible to form a lower bound to the log-likelihood:

logPθ(Y) ≥ LELBO(θ, φ,Y) := E
Q

[
log

Pθ(Y,B, τ)

Qφ(B, τ |Y)

]
. (6)

Auto Encoding Variational Bayes (Kingma & Welling, 2013) (AEVB) simultaneously trains
Qφ(B, τ |Y) and Pθ(Y,Z). The expectation in Eq. (6) is approximated by averaging Monte Carlo
samples from Qφ(B, τ |Y) which are reparameterized by evaluating a deterministic function of a
φ-independent random variable.

3 VARIATIONAL COMBINATORIAL SEQUENTIAL MONTE CARLO

Variational Objective The idea of VCSMC is to simultaneously train the target and proposal dis-
tribution by maximizing a lower bound to the data log-likelihood, while using CSMC as the marginal
likelihood estimator. We begin by defining a structured approximate posterior which factorizes over
rank events. To do so, we will change notation from CSMC writing the resampled state s̃r−1,k as

s
akr−1

r−1 to make explicit the dependency of s̃r−1 on its resampled index akr−1. Let qφ(sr,k|s
akr−1

r−1 )

denote conditional the probability of state sr,k given the resampled state at the previous rank s
akr−1

r−1 .
Subscripts φ and ψ denote discrete and continuous proposal parameters respectively:

Qφ,ψ
(
S1:K1:R

)
:=

(
K∏
k=1

qφ(s1,k) · qψ(B1,k)

)
(7)

×

(
K∏
k=1

N−1∏
r=1

qφ

(
sr,k|s

akr−1

r−1

)
· qψ

(
Br,k|B

akr−1

r−1

)
· CATEGORICAL

(
akr−1|w̄1:K

r−1
))

.

At the final rank event, an unbiased approximation to the likelihood is formed by averaging over
importance weights, which, in turn represent the sample phylogenies that are constructed iterativly.
A multi-sample variational objective formed is via the lower bound:

LV CSMC := E
Q

[
log ẐV CSMC

]
, ẐV CSMC := ‖πR,K‖ =

R∏
r=1

(
1

K

K∑
k=1

wr,k

)
(8)

The presence of the DISCRETE densities over partial states presents a challenge for variational repa-
rameterization. Unlike standard variational SMC methods, states are formed by sampling from a
large combinatorial set. We take two approaches, the first is to drop discrete terms from the gra-
dient estimates. The second is to reparameterize these terms as Gumbel-Softmax random variables
forming a differentiable approximation through a convex relaxation over the simplex. Continuous
proposal terms are drawn by evaluating a deterministic function of a ψ-independent random variable.

Implementation Details Constructing the objective LV CSMC is done iteratively in three steps.
The EXTENDPARTIALSTATE procedure requires selecting two partial states to coalesce by sampling
without replacement. This is accomplished by defining Gumbel-Softmax random variables. The
uniform log-probability for each index is perturbed by adding independent Gumbel distributed noise,
after which the largest two elements are returned. For example let U ∼ UNIFORM(0, 1), we then
form G = γ − log(− logU) so that G can be reparameterized as G′ = G + γ. The RESAMPLE
procedure can also be reparameterized similarly by defining Gumbel-Softmax random variables.

The COMPUTEWEIGHTS step requires some care. In order to compute importance weights, the
likelihood of a partial state must be computed using the sum-product algorithm, however the prob-
ability measure π is only defined on the target space of trees T , and not the larger sample space
of partial states S := ∪r Sr. Intuitively, the sum-product or pruning algorithm yields a maximum
likelihood estimate for an evolutionary tree, but partial states contain disjoint subtrees or disjoint
leaf nodes. To illustrate this, consider the jump chain for the partial state {A,B} defined on the four
taxa {A,B,C,D} written as s1 = {{A,B}, {C}, {D}}. This partial state admits three possible
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(a) Log likelihood across epochs
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(b) Phylogeny sampled from the posterior

Figure 1: (Left): Log likelihood values for K = {4, 8, 16, 32, 64, 128} samples of VCSMC on the
primates data averaged across 3 random seeds. Higher values of K produce tighter ELBO / larger
log likelihood values with lower stochastic gadient noise. VCSMC with K ≥ 16 outperforms proba-
bilistic path Hamiltonain Monte Carlo (ppHMC) which is shown (yellow) for comparison. (Right):
A single nonclock phylogeny sampled from the posterior with probability proportional to the impor-
tance weights at the final step. From left to right: M Mulatta, M Sylvanus, M Fascicularis, Saimiri
Sciureus, Macaca Fuscata, Homo Sapiens, Pan, Gorilla, Pongo, Hylobates, Tarsius Syrichta, Lemur
Catta. The leftmost clade partitions monkeys whereas the central and right clades partition hominids
and prosimians respectively.

evolutionary trees (depicted in Fig 2 of the Appendix). The likelihood for each of these phylogenies
contains a factor corresponding to the message passed from {A,B} to the parent node PA(A,B).
At the root node, in order to form the likelihood from a distribution over discrete characters, the
pruning algorithm evaluates the inner product of PA and the prior η (the stationary state of Q). One
extension of the target measure π into a measure on S suggested by (Wang et al., 2015) is to treat
all elements of the jump chain as trees (in this case, the subtree consisting of {A,B} or PA(A,B)
and non-coalescing singletons {C} and {D}). The contribution of each of the elements in the jump
chain to the likelihood is multiplied by taking the inner product of each distribution over characters
with η. This extension has the advantage of passing information from the non-coalescing elements
to the local weight update. We explore other extensions in future work.

4 RESULTS

Primate Mitochondrial DNA We evaluate VCSMC on a benchmark dataset of nucleotide se-
quences of homologous fragments of primate mitochondrial DNA (Hayasaka et al., 1988). The
dataset consists of 12 taxa {S0, · · · , S11} over 898 sites admitting 13,749,310,575 distinct tree
topologies. The set of taxa includes five species of homonoids, four species of old world mon-
keys, one species of new world monkey and two species of prosimians. VCSMC is run with
K = {4, 8, 16, 32, 64, 128} particles, averaged over 3 random seeds. Fig 1 (left) shows higher
values of K produce larger log likelihood values (tighter ELBO values) with lower stochastic gradi-
ent noise. VCSMC withK ≥ 16 outperforms probabilistic path Hamiltonain Monte Carlo (ppHMC)
shown (yellow trace) for comparison. Fig 1 (right) illustrates a single phylogeny sampled from the
posterior with probability proportional to the importance weights at the final step. From left to right:
M Mulatta, M Sylvanus, M Fascicularis, Saimiri Sciureus, Macaca Fuscata, Homo Sapiens, Pan,
Gorilla, Pongo, Hylobates, Tarsius Syrichta, Lemur Catta. The leftmost clade partitions monkeys
whereas the central and right clades partition hominids and prosimians respectively.

5 CONCLUSION

We have sketched VCSMC, a method for model inference and parameter learning in Bayesian phy-
logenetics. To our knowledge, VCSMC is the first method to define a variational objective on the
composite space of phylogenetic trees using Sequential Monte Carlo. VCSMC is written in Tensor-
flow. An implementation is available online at https://github.com/amoretti86/phylo.
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Sebastian Höhna and Alexei Drummond. Guided tree topology proposals for bayesian phylogenetic
inference. Systematic biology, 61:1–11, 01 2012. doi: 10.1093/sysbio/syr074.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

Clemens Lakner, Paul van der Mark, John P. Huelsenbeck, Bret Larget, and Fredrik Ronquist. Ef-
ficiency of Markov Chain Monte Carlo Tree Proposals in Bayesian Phylogenetics. Systematic
Biology, 57(1):86–103, 02 2008. ISSN 1063-5157. doi: 10.1080/10635150801886156. URL
https://doi.org/10.1080/10635150801886156.

Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-encoding sequential
monte carlo. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BJ8c3f-0b.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables, 2016.

Antonio Moretti, Andrew Stirn, Gabriel Marks, and Itsik Pe’er. Autoencoding topographic factors.
Journal of Computational Biology, 26(6):546–560, 2019a.

Antonio K Moretti, Zizhao Wang, Luhuan Wu, and Itsik Pe’er. Smoothing nonlinear variational ob-
jectives with sequential monte carlo. ICLR Workshops, 2019b. URL https://openreview.
net/pdf?id=HJg24U8tuE.

Antonio Khalil Moretti, Zizhao Wang, Luhuan Wu, Iddo Drori, and Itsik Pe’er. Particle smoothing
variational objectives. CoRR, abs/1909.09734, 2019c.

5

https://doi.org/10.1093/nar/gku1207
http://proceedings.mlr.press/v70/dinh17a.html
http://www.ncbi.nlm.nih.gov/pubmed/7288891?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7288891?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7288891?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
https://doi.org/10.1093/oxfordjournals.molbev.a040524
https://doi.org/10.1093/oxfordjournals.molbev.a040524
https://doi.org/10.1093/bioinformatics/17.8.754
https://doi.org/10.1080/10635150801886156
https://openreview.net/forum?id=BJ8c3f-0b
https://openreview.net/forum?id=BJ8c3f-0b
https://openreview.net/pdf?id=HJg24U8tuE
https://openreview.net/pdf?id=HJg24U8tuE


Machine Learning in Computational Biology (MLCB 2020)

Antonio Khalil Moretti, Zizhao Wang, Luhuan Wu, Iddo Drori, and Itsik Pe’er. Variational ob-
jectives for markovian dynamics with backward simulation. European Conference on Artificial
Intelligence, 2020.

D.A. Morrison. Multiple sequence alignment for phylogenetic purposes. Aust. Syst. Bot., 19:476–
539, 01 2006.

Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational sequential
monte carlo. volume 84 of Proceedings of Machine Learning Research, pp. 968–977, Playa
Blanca, Lanzarote, Canary Islands, 09–11 Apr 2018. PMLR. URL http://proceedings.
mlr.press/v84/naesseth18a.html.

Fredrik Ronquist, Maxim Teslenko, Paul Mark, Daniel Ayres, Aaron Darling, Sebastian Höhna,
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APPENDIX: ADDITIONAL DETAILS OF THE IMPLEMENTATION

A B C D A B C D A B D C

Figure 2: An example of the partial state s = {A,B} for four taxa {A,B,C,D} illustrated using its
dual representation D(s). The dual state D(s) ⊆ T corresponds to the three complete tree topolo-
gies. (left): {{A,B}, {C,D}} (center): {{A,B}, {A,B,C}} and (right): {{A,B}, {A,B,D}}.

Theorem 1 (Gershgorin) Let A be an n× n matrix with entries in C. For each i, let Di be the disc,

Di =

z ∈ C : |z −Aii| ≤
∑
j 6=i

|Aij |

 , (9)

then the eigenvalues of A lie in D1∪D2∪ · · ·∪Dn. It follows that an upper bound on the maximum
absolute value for the eigenvalues of A is given by:

max
i
λi ≤ max

i

∑
j

|aij | . (10)

The likelihood of a given phylogeny is independent across sites and can be evaluated using the
sum-product algorithm via the formula:

P (Y|τ,B, θ) :=

M∏
i=1

∑
ai

η(aiρ)
∏

(u,v)∈E(τ)

exp
(
−bu,vQaiu,a

i
v

)
, (11)

where ρ is the root node, aiu is the assigned character of node u, E(τ) represents the set of edges in
τ and η is the prior or stationary distribution of the Markov chain.

In the experiments, the trainable parameters consist of the components of Qij and the branch length

distribution rates λbl for each qψ

(
Br,k|B

akr−1

r−1

)
. The softmax activation is used to constrain and

Algorithm 1: Combinatorial Sequential Monte Carlo
0. Initalization. ∀ k, s0,k ← ⊥, w0,k ← 1/K;
1. for r = 0 to |X| − 1 do

2. for k=1 to K do
a. Resample partial states

s̃r−1,1, · · · , s̃r−1,k ∼ π̄r−1,k
b. Extend partial states

sr,k ∼ ν+s̃r−1,k

c. Compute weights for new particles

wr,k = w(s̃r−1,k, sr,k) =
π(sr,k)

π(s̃r−1,k)
·
ν−sr,k(s̃r−1,k)

ν+s̃r,k(sr,k)

end
end
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normalize components so that
∑
j 6=iQij = 1, ensuring a bound on eigenvalues via the Gershgorgin

circle theorem. The components of Qij and λbl for each qψ

(
Br,k|B

akr−1

r−1

)
can also be parameterized

as a deep generative model using the output of neural networks. In this setup, the evolution of each
site is modeled as a nonlinear function of spatial position on the genome.
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