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Abstract
Topographic factor models separate overlapping
signals into latent spatial functions to identify
correlation structure across observations. These
methods require underlying structure to be held
fixed and are not robust to deviations commonly
found across images. We present Auto-Encoding
Topographic Factors, a novel variational infer-
ence scheme to decompose irregular observa-
tions on a lattice into a superposition of low
rank sources. By exploiting recent develop-
ments in variational autoencoders, we replace
fixed sources with a non-linear mapping that pa-
rameterizes an unnormalized distribution on the
lattice. In doing so, we permit sources to drift
dynamically filtering residual differences in lo-
cation across comparable areas of interest. This
gives an implicit mapping to a unique latent rep-
resentation while simultaneously forcing the pos-
terior to model group variability in spatial struc-
ture. Simulation results and applications to func-
tional imaging demonstrate the effectiveness of
our method and its ability to outperform existing
spatial factor models.

1. Introduction
The analysis of biomedical images has accelerated in
recent years due to domain specific methodologies de-
veloped for multiple application areas. Calcium imag-
ing in neurons (Pnevmatikakis et al., 2016), transcrip-
tome profiling from single cells (Svensson et al., 2017)
and functional imaging of various biomarkers (Gersh-
man et al., 2014; Manning et al., 2014a) are exciting
examples. Latent variable models are the predominant
method for visualizing and extracting structure in spa-
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tial data. This data is characterized by a location vector
xi ∈ Ω ⊆ Rd parameterizing each observation y(xi).
Given a tensor Y ≡ {y(x1), · · · ,y(xm)}Nn=1 of N real-
izations, each a sequence of m correlated random variables
Y (x1), · · · , Y (xm), a fundamental challenge is to identify
a subset of physical locations that define areas of interest.
To this end, lattice based models formalize an encoding of
a latent probability distribution over Y (x1), · · · , Y (xm) to
quantify statistical dependencies based on distance. This
representation is often used for Gaussian process regression
or Kriging methods to predict covariance structure between
hidden variables and observed features across physical lo-
cation in an ensemble (Svensson et al., 2017). For example,
extracting relevant voxels from a collection of functional
images to discover a latent hemodynamic response enables
comparing baseline vs pathological populations (Worsley
et al., 1996).

Techniques such as robust principal component analy-
sis (Candès et al., 2011), independent components analy-
sis and dictionary learning are commonly applied to blind
source separation problems; however they require an in-
herently linear demixing or deconvolution and may fail if
there is no linear mixture that leads to independent out-
puts (Mukamel et al., 2009). Notably these methods do
not learn a distribution on the lattice that can be used to
quantify uncertainty or to generate new data. Topographic
factor models (Gershman et al., 2011; 2014; Manning et al.,
2014a) are a family of Bayesian variational techniques for
images that require underlying structure on the set of ran-
dom variables to be held constant to produce a matrix fac-
torization with spatially interpretable sources.

Here we develop Auto-Encoding Topographic Factors
(AETF), a novel Bayesian algorithm to infer spatial de-
pendencies by decomposing observations on a lattice into a
weighted set of low rank sources. We are particularly inter-
ested in a solution that generalizes to unseen data and that is
robust to non-collocated regions of interest. The key insight
of AETF is to leverage recent advances in variational infer-
ence (Gershman et al., 2014; Ranganath et al., 2014) and
Stochastic Gradient Variational Bayes (Kingma & Welling,
2013; Rezende et al., 2014) to learn a latent probability
model that preserves group variability in spatial structure.
Our contributions are to combine two paradigms where
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convolutional neural networks define the loading matrix
and the factor matrix itself maps data to source functions
that transform across observations. This is achieved with-
out hard coding hyper parameters that control an a-priori
generative model. In doing so, we remove the propensity
on initialization of domain specific priors. Experiments
on two simulated datasets and on functional imaging data
show that our model returns a higher proportion of variance
explained than existing Topographic factor models.

2. Related Work
Non-negative matrix factorization has been adapted to
calcium imaging data to infer both location and spiking
dynamics of neurons from fluorescence movies (Pnev-
matikakis et al., 2016), (J. Friedrich, 2015). In order to
facilitate inference, significant domain specific prepossess-
ing must be done to constrain the region of interest to
patches and model spatial background structure. A more
general approach to factor analysis for space-time varia-
tion involves identifying a common set of shared factors
whose time varying dynamics are modeled with autoregres-
sive weights (Lopes et al., 2008). Our method differs in
that we allow each observation to have a unique set of fac-
tors generated by a common non-linear mapping from the
input space. In the case of Spatial Dynamic Factor Analy-
sis, Bayesian inference is performed with a reversible jump
MCMC algorithm whose convergence is difficult to asses
and must be tailored for the problem at hand.

Topographic Factor Analysis (TFA) is a matrix decompo-
sition method for functional imaging proposed (Manning
et al., 2014b) and fit using Black Box VI (Ranganath et al.,
2014). Hierarchical Topographic Factor Analysis (HTFA)
(Manning et al., 2014a) extends TFA for hierarchical data
by inferring a separate set of parameters for each subject.
The parameter of the generative model are picked heuris-
tically while the parameters of the variational posterior are
often pre-fit using a preprocessing algorithm. Our approach
uses similar spatial functions and a posterior which is mean
field in time, however (Manning et al., 2014b;a) hard codes
the structure of the factors which are shared across obser-
vations. AETF requires no heuristic choice of generative
model parameters and uses only variational inference to fit
the approximate posterior. Previous models are unable to
capture the variation among observations while fitting in-
dividual specific factors. In this sense, we develop a ro-
bust and expressive posterior which does not require hand
tuning hyper-parameters for the priors. Unlike TFA and
HTFA, our model does not require knowledge of the hi-
erarchical covariance structure a-priori. Additionally, the
TFA and HTFA models do not generalize to unseen data
suffering linear parameter growth with respect to the size
of the dataset.

3. Auto-Encoding Topographic Factors
3.1. Standard Lattice Modeling

Following the convention of factor analysis, we assume that
our data Y ∈ RN×V can be decomposed into a set of unob-
served weights and latent factors. We use N to denote the
number of observations (images), K the number of sources
and V the number of lattice positions (voxels). We will be
discussing lattices in both 2D as well as 3D for our analysis.
Each latent source is defined using a function that assigns a
value to each point on the lattice (in voxel space) based on
its location. For example, using the MVN:

K(xi|µ,Σ) = exp
{
− 1

2
(xi − µ)TΣ−1(xi − µ)

}
(1)

We posit each observation yn ∈ R1×V has a low rank
approximation that is a product of factor loadings wn ∈
R1×K and a factor matrix F ∈ RK×V . The generative dis-
tribution of our model factorizes using a Gaussian as fol-
lows:

P (Y) =

N∏
n=1

P (yn) (2)

P (yn) = N (yn|wnF, σ2
y) (3)

where σ2
y denotes the location or voxel noise. In Man-

ning (Manning et al., 2014b), radial basis source functions
fk ∈ RV are used to generate basis images and to define
F, the source image matrix. In general rows of F are com-
puted by evaluating each of the K source functions at all V
lattice points of the voxel space.

While it is common to focus on Σ = σI or the MVN case
in which Σ is full, a larger class of kernels are supported
through the Matérn family of covariance functions. Here
Kν(·) is the modified Bessel function of the second-kind
with order parameter ν, where ρ defines correlation length
and bνc describes the smoothness of the process. Γ(·) is
the gamma function.

K(xi|µ, ν) =
1

Γ(ν)2ν−1

(√2ν

ρ
· ‖xi − µ‖

)ν
(4)

×Kν

(√2ν

ρ
‖xi − µ‖

)
The above simplifies for half-integer values of ν and re-
duces to the rational quadratic function with ν, ρ > 0 to
express a scale mixture of squared exponentials:

K(xi|µ, ν, ρ) =

(
1 +
‖xi − µ‖2

2νρ2

)−ν
(5)

Samples from the Gaussian process are bν − 1c times dif-
ferentiable producing the RBF case when ν → ∞. As
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with the above, the choice of distance metric can produce
isotropy or anisotropy.

We are interested in the posterior distribution which in-
volves integrating over the set of possible values for the
latent variables:

P (W,F|Y) =
P (Y,W,F)

P (Y)
(6)

P (Y) =

∫ ∫
P (Y,W,F)dWdF (7)

The problem is in general intractable to compute. To per-
form variational inference, a mean field distribution is de-
fined in which each variable is independent:

Q(W,M,Λ) =

N∏
n=1

K∏
k=1

N (wn,k|mwn,k
,Λwn,k

)

N (cn,k|mcn,k
,Λcn,k

)N (sn,k|msn,k
,Λsn,k

) (8)

We introduce notation for the set φk ∈ φ to denote hyper-
parameters where c, s, w denote centers, width scales and
weights respectively:

φk = {mc,k,Λc,k,ms,k,Λs,k,mw,k,Λw,k} (9)

These allow drawing corresponding latent random vari-
ables for centers, width scales and weights for the kth latent
source:

Zk = {zc,k, zs,k, zw,k} (10)

where zξ,k ∼ N (mξ,k,Λ
2
ξ,k) for ξ ∈ {c, s, w}. Note that

in the isotropic case φ ∈ RK(D+5) and Z ∈ RK(D+2)

where D is the dimensionality of the lattice.

Across all ξ, k one can define mφ = (mξ,k)∀ξ,k and Σφ =
ΛφΛ

T
φ for Λφ = (Λξ,k)∀ξ,k, thus the parameters mφ,Σφ

denote the means and covariances which are used to draw
Z. Z then defines F, by fk being a Gaussian function with
parameters zc,k and zs,k.

3.2. Auto-Encoding Topographic Factors

The idea of AETF is to replace the fixed latent sources by
defining a function that parameterizes Z using the output
of a probabilistic encoder. The encoder creates an implicit
mapping from each yn ∈ Y across the set of observations
to a unique factor representation while requiring that φ en-
codes the group variability in spatial structure.

Formally, the variational inference framework states the
ELBO for the marginal log likelihood L(Y) ≤ log p(Y)
with respect to the variational approximation qφ(Z|Y):

L(Y) = Eq(z|y)[log pθ(Y,Z)]− Eq(z|y)[log qφ(Z|Y)]

= Eq(z|y)[log pθ(Y|Z)]−DKL(qφ(Z|Y)||p(Z))]
(11)

We wish to compute the expectation in (11) numerically
and differentiate with respect to φ.

We now rewrite Equation (3) as

P (yn) = N (yn|wn(yn)F(yn), σ2
y) (12)

and decompose F as

F(yn) =

 f1
(
yn
)

...
fK
(
yn
)
 (13)

where fk
(
yn
)

is the lattice values of a Gaussian func-
tion parameterized by zc,k

(
yn
)

and zs,k
(
yn
)
. zξ,k

(
yn
)

itself is a latent variable drawn from a normal distribution
zξ,k
(
yn
)
∼ N

(
mk,ξ,φ(yn),Λk,ξ,φ(yn)

)
whose parame-

ters are the encoder output.

Employing the well known reparameterization
trick (Kingma & Welling, 2013; Rezende et al., 2014), we
sample from ε ∼ N (0, I) to compute the following as the
Monte Carlo estimates of gradients have high variance:

Zc = µc + ε� σc (14)
Zs = µs + ε� σs (15)

One is now free to choose the weights Zw ∈ φ as varia-
tional parameters of the recognition model or parameters
with the generative model: Zw ∈ θ. Including the weights
in φ gives:

Zw = µw + ε� σw (16)

When Zw 6∈ φ, we learn the weights as point estimates
using the update rule:

Wi+1 ←Wi �YF(yn)T �WiF(yn)F(yn)T (17)

Note that the problem is hard due to the non-convexity in
the source image matrix. With the parameters φ of the
recognition model in hand, we have the full model spec-
ification. In contrast to standard autoencoder formaliza-
tion, where the generative model involves a decoder whose
parameters need to be inferred, AETF specifies the gener-
ative model. We thus compute the approximation ŷn =
W(yn) · F(yn).

Standard autoencoders learn the respective en-
coder/decoder parameters θ, φ by maximizing the
conditional log likelihood Eq(z|yi)[log pθ(y

i|z)] by
differentiating through g ← ∇θ,φLM (θ, φ; YM , ε)
(Kingma & Welling, 2013; Rezende et al., 2014). AETF
only needs to learn the encoder parameters φ, which is
achieved by analogous maximization of the conditional log
likelihood Eq(z|yi)[log p(yi|z)], differentiating through
g ← ∇φLM (φ; YM , ε).
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Figure 1. Schematic illustrating encoder network architectures for the AETF framework. Shallow (a) and deep (b) architectures shown.

3.3. Implementation

The encoder takes as input an observation and outputs the
parameters of the distributions over latent variables. Two
recognition models are implemented, one with isotropic
and another with full covariance source functions. The
isotropic decoder receives as input the sampled latent space
vector Z ∈ Rk(d+2) including Zc, Zs, and Zw. Note that
in the second case of a full covariance matrix ZsΣk =

ΛΛT , we learn parameters ZsΣ ∈ Rkd(d+1)/2. The spa-
tial factorization constraints of our probability model are
imposed within the decoder. Thus unlike traditional vari-
ational autoencoders where both the encoder and decoder
are neural networks, AETF uses a neural network only for
the encoder. The decoder uses the sampled latent space to
reconstitute the input according to our imposed factoriza-
tion and therefore is not parameterized by a neural network.

The encoder network can be comprised of any number
of convolutional layers followed by any number of fully-
connected layers before the output layer. The convolutional
layer executes a L(1) ⊗ · · · ⊗ L(D) convolution along the
number of lattice dimensions D (where L is specified for
each layer) with k (the number of sources) output channels,
a bias addition, a tanh non-linearity, and max pooling with
a 3(1) ⊗ · · · ⊗ 3(D) kernel and a stride of 1. Our fully-
connected layers begin operating on the flattened output of
the last convolutional layer or the flattened image if a con-
volution layer is not employed. Their output dimensions
are specified ratiometrically according their output-to-input
dimensions. Like most autoencoders, our encoder seeks to
compress information. Thus, we only consider output-to-
input ratios for our fully-connected layers that are all less
than or equal to 1. These fully-connected layers invoke an
affine transformation followed by a tanh non-linearity.

Our final output layer varies according to the latent space
parameter class. Those parameters that are means (µc, µs,
and µe) have no restrictions on their values except the last
one, which must be positive. We handle this exception
in the decoder. Therefore, we are free to use a vanilla
affine transform as the output layers for these parameters.
Conversely, those parameters that are standard deviations

(σc, σs, and σw) must be greater than or equal to zero.
Thus for those standard deviations that parameterize our
latent space, we employ an affine transformation followed
by a custom non-linearity we call PostReAct (Positive Real
Activation in equation 18). This non-linearity is a piece-
wise combination of a shifted ReLU and a decaying ex-
ponential. In this manner, we benefit from ReLU’s posi-
tive regime that avoids vanishing gradients that are com-
mon with double-saturating activations while avoiding the
potential of neuron death associated with ReLU’s negative
regime.

Ψ(λ) =

{
exp(λ) , λ < 0

λ+ 1 , λ ≥ 0
(18)

Our decoder has two responsibilities. First, it constructs the
spatial factors using the Zc and Zs latent space. However
and as aforementioned, Zs arrives at the encoder on the in-
correct support. The RBF function assumes this number is
positive. We convert Zs to the correct support in two ways.
First, we pass it through a PostReAct non-linearity. Sec-
ond, we square it in our isotropic implementation. Equation
(19) captures this process that we use for each of our ba-
sis image calculations. Here, fk(v) represents the value of
the kth RBF source at voxel position v. Unlike traditional
RBF functions, we add a 1 to the denominator to clamp
the source’s width in a continuously differentiable fashion.
Prior to this modification, sampled Zs that resulted in small
source widths produced exploding gradients for our opti-
mizer. Once, the decoder constructs the k basis images it
recombines them into a single image via a weighted sum-
mation that uses Zw.

fk(v) = exp

(
− ||Zc,k − v||22

2 ·Ψ(Zs,k)2 + 1

)
(19)

We present two encoder network architectures. Our first,
uses only a 7 × 7 convolutional layer followed by the out-
put layer. Our second uses–in order of appearance–a 7× 7
convolutional layer, a 5 × 5 convolutional layer, a 1 : 1
output-to-input fully-connected layer, and a 4 : 3 output-
to-input fully-connected layer followed by the output layer.
We then permute these two architectures for differing num-
bers of latent sources. We note that k modifies the size of
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Figure 2. Description of the first simulation: (a) Schematic illustrating two source functions located near the vertices of the lattice. Each
source transforms across observations drifting between one of two states (denoted with colors red and black); (b) variance explained for
different models using two components. AETF outperforms TFA on the train set; (c) TFA, PCA and ICA underperform on the test set.

the network as it determines the number of output channels
for each convolutional layer. Our implementation supports
imposing a non-negative factorization in addition to one in
which the weights are permitted to take negative values.

We modify the loss from equation (11). Specifically, we
introduce a β term in front of the regularizer as suggested
in (Liang et al., 2018). Furthermore, they suggest β values
less than 1 improve quality. The utilized per-sample loss
function for AETF appears in equation (20). In our experi-
ments we set β to zero such that our loss reduces to just the
reconstruction error. Here, n represents the nth sample and
V is the cardinality of our voxel space such that subscript
n, i corresponds to the ith voxel of the nth sample.

L(Yn) =
1

V

V∑
i=1

[
(Ŷn,i −Yn,i)

2
]

(20)

+ βDKL(qφ(Zi|Yi) || p(Zi))

4. Experiments
Three results are presented, each of which illustrates a
strength of the AETF model. We discuss i) fitting in-model
synthetic data, ii) fitting non-collocated source functions to
smooth, unmix and localize spatial dependencies in ran-
dom fields, and iii) decomposing thousands of functional
images into latent source functions and evaluating our abil-
ity to generalize on unseen data.

4.1. In-Model Data

We generate a synthetic dataset using k = 2 source func-
tions over 1000 observations on a 20× 20×20 lattice. In
our experiments, Topographic Factor Analysis (TFA) was
unable to handle larger lattice dimensions in R3. Unlike
the generative process specified in TFA (Manning et al.,
2014a), the position of each source function may shift
across observations and is not restricted to be collocated
on the lattice. This design choice is relevant given that
the blood oxygen level dependency (BOLD) response is
not static and often transforms dynamically as a time se-

ries. Figure (2a) provides a schematic illustrating the po-
sition of two sources located near the vertices of the cube.
Each source function is permitted to drift between one of
two possible states which are represented using the red and
black colors. Figures (2b) and (2c) provide the variance
explained on the training and testing sets respectively us-
ing k = 2 components. TFA, ICA and PCA underperform
relative to Dictionary Learning (DL) and AETF. Unlike
DL, AETF is able to parameterize the transforming source
functions while maintaining nearly all of the variance ex-
plained.

4.2. Gaussian Random Fields

Gaussian random fields (GRFs) are often used in image
analysis to model stochastic processes on a lattice and to
introduce noise. We illustrate how Auto-Encoding Topo-
graphic Factors recovers autocorrelation structure by fil-
tering a sequence of GRFs simulated using spectral meth-
ods (Annika & Jrgen, 2011). The spectral density of a fixed
covariance kernel is multiplied with a Fourier transformed
white noise field before applying an inverse transform. This
process introduces a non-smooth signal in which spatial au-
tocorrelations are not explicitly colocated across observa-
tions.

Figure (3a) provides a representative sample along with the
inferred reconstruction in Figure (3b). We fit 10 source
functions to 1000 observations on a cubic lattice. As a
visualization, the planar cross-section is provided in Fig-
ure (3). The surface is shifted above the image to illus-
trate the smoothness of the field along with contours pre-
senting the location of the inferred spatial factors. Fig-
ure (3c) provides the variance explained across models and
fits. Auto-Encoding Topographic Factors outperforms To-
pographic Factor Analysis both without and with initializa-
tion (denoted TFA and TFAI ), ICA, Dictionary Learning
(DL), and PCA; the canonical method for Gaussian data.
It is clear that Topographic Factor Analysis underperforms
when the correlation structure is not held fixed.
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Figure 3. Summary of the AETF fit to the GRF simulation: (a) the cross-section of a single observation and (b) the cross-section of the
AETF topographic reconstruction. The surface is shifted above the plane to illustrate the smoothness of the field along with contours
presenting the location of the inferred spatial factors; (c) variance explained across models. AETF provides the highest R2.

4.2.1. IMAGE NOISE

Spatial factor models learn a smooth statistical map in the
presence of noise in which the desired signal extends over
several lattice points. A good fit should be robust to vari-
ation between observations while preserving correlation
structure within the data. To achieve this, Auto Encoding
Topographic Factors learns a unique decomposition by si-
multaneously factorizing the observation matrix, inferring
the position of spatial dependencies and introducing flex-
ibility for the location of factors across the lattice. This
process is analogous to blurring residual differences in lo-
cation between comparable areas of activation. When two
observations are similar, this is captured in their latent spa-
tial representations. For heterogenous data, AETF parame-
terizes spatial dynamics.

4.2.2. INITIALIZING TFA AND HTFA

Heuristics are often suggested to initialize hyper-
parameters for Topographic Factor Analysis so that local
optima in the source image matrix do not serve as an im-
pediment for non-convex optimization. There exist multi-
ple values of parameters for the location and width of the
sources that are equally likely to have generated an obser-
vation yn, due to the rotational invariance of F. One pro-
posed approach is to place hyperparameters a-priori in lo-
cations corresponding to high and low activation. Hotspot
initialization (Manning et al., 2014a) refers to an iterative
process in which the mean image is computed, the mean
activation is subtracted and the absolute value is taken of
all of the remaining activations. The result is an energy
landscape in which peaks correspond to extremum. These
peaks are iteratively flattened as source centers are placed
on these extremum. Values for msn,k

the mean of the dis-
tribution for source k′s width scale are then solved for via
Newton’s method. Once pre-initialized, the source centers
and width scales frequently remain fixed. In our experi-
ments, sources for TFA initialized using both hotspot ini-

tialization and k-means outperformed experiments with no
initialization. Auto-Encoding Topographic Factors outper-
formed both methods without being contingent upon any
such initialization to perform inference successfully.

4.3. NYU Dataset

We consider the problem of modeling functional images
using the NYU Test-Retest dataset (Shehzad et al., 2009).
The data was obtained using a Siemens Allegra 3.0 Tesla
scanner. The data consists of twenty six participants each
with 3 resting-state scans of 197 continuous EPI functional
volumes. Each scan consists of 39 slices of a matrix 64×64
with an acquisition voxel size of 3×3×3 mm. Scans 2 and
3 were conducted 45 minutes apart roughly 5-16 months
after Scan 1.

Slice timing correction, spatial normalization, smoothing
and noise stripping were performed using the Nipype in-
terface to the FSL software library. The sequential depen-
dency of the time series was not accommodated and each
time frame was treated independently. An AETF model
was trained using all three sessions reserving 20% for the
testing set as a performance criteria to evaluate our fit. To
test the significance of the lattice dimensions, models were
fit to both sagittal cross-section data and full cubic vol-
umes.

4.3.1. SAGITTAL CROSS-SECTIONS IN 2D

Sagittal cross-section data was fit to the 13 subjects us-
ing the first session. Figure (4a) provides the variance ex-
plained for AETF, PCA, ICA and DL as a function of num-
ber of sources on training data. TFA and HTFA implemen-
tations are not supported on the 2D lattice. The R2 ap-
proaches 1 the number of sources K increases. Figure (4b)
plots the weight values for two randomly selected source
functions across a subset of time frames. Dashed vertical
lines distinguish subjects. Strong per-subject similarities
are visible. Figure (4c) provides the variance explained
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Figure 4. Summary of the Sagittal Cross-Section NYU Data: (a) variance explained for various models as a function of number of
sources on the training data; (b) two source weights plotted across time frames illustrating strong subject-specific similarities. Dashed
vertical lines denote unique subjects; (c) variance explained as a function of number of sources for test data. AETF returns a near perfect
variance explained using k = 25 source functions.

by AETF as K increases on the test data. Using k = 50
source functions 99% of variance is explained. We find that
K = 25 anisotropic sources are sufficient for high qual-
ity reconstruction. Interestingly, AETF is able to converge
without any preprocessing to preserve 89% of total vari-
ance on the raw NYU data. On the preprocessed dataset 25
source functions preserve 98% of total variance.

4.3.2. FUNCTIONAL IMAGING WITH 3D VOLUMES

The three-session NYU data on the cubic lattice was mod-
eled using AETF, TFA and HTFA. The 64 × 64 × 40 lat-
tice was divided into eight 20 × 20 × 20 cubic volumes.
TFA and HTFA were unable to handle larger lattice dimen-
sions on the full set of 7683 frames. We fit k = 10 source
functions to each cubic volume and average the cost across
the total area. For TFA, one model was fit across subjects
whereas 39 subjects were fit using HTFA. Figure (5a) dis-
plays a new frame evaluated using the trained model to il-
lustrate the effect of applying the trained model on unseen
data. The surface is plotted above the image to highlight
the areas of activation above the corresponding factors on
the mesh. Figure (5a) and (5b) provide the train and testR2

respectively. It is clear that AETF outperforms both meth-
ods. Unlike HTFA, the hierarchical covariance structure is
inferred from the data and not specified a-priori.

5. Discussion
In the context of functional imaging, a spatial model should
be able to extract both global and individual characteristics.
In examining how the model parameters for centers, widths
and weights varied across testing data, we find source cen-
ters are not only similar at the per-subject micro-scale but
also marginally similar at the global macro-scale. How-
ever, we see much more global variability with weight
values. Compared to a similar factorization in (Manning
et al., 2014b) that constricts learning to globally shared

sources and individual per-frame weights, our model nat-
urally learns a similar representation. Namely, through
a shared encoder mapping, source variability is less pro-
nounced than weight variability.

Auto-Encoding Topographic Factors offers several advan-
tages over unstructured blind source separation techniques.
TFA, HTFA, Dictionary Learning, PCA and ICA explicitly
learn factor weights (loadings) for each observation. The
number of trainable parameters is therefore linear with re-
spect to N , the number of observations. AETF’s parame-
ters φ are constant with respect to N . This paradigm re-
duces memory footprint for large N and allows AETF to
handle unseen data. By design, the factor images learned
by AETF possess lower complexity than the observed im-
ages.

AETF can accommodate any priors but is not contin-
gent upon an a-priori choice of generative model hyper-
parameters to converge. This is mitigated by choosing uni-
form priors for the generative model. In this way, AETF
is not sensitive to preinitialization issues that plague TFA
and HTFA. It is also possible to parameterize the priors
of the generative model using a trainable decoder network.
Unlike TFA and HTFA, source functions are allowed to
transform across individual frames. This is advantageous
for time series modeling. In our experiments, Dictionary
Learning sometimes provided a comparable R2. AETF
however returns a factorization along with spatially param-
eterized functions. AETF was written in TensorFlow. The
source code and several visualizations are available online.

6. Conclusions
We have presented Auto-Encoding Topographic Factors, a
novel variational inference scheme for lattice-based mea-
surements in which each observation is given a unique
spatial decomposition. The proposed method is robust to
high dimensional data in which sources are not rigidly
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Figure 5. The distribution of the top 15 weighted source center means for subjects and time frames. Colors represent distinct source
function center means. The outline of a single frame is provided as a reference. Each point is a parameter for an image in a collection of
time series. The latent factors recovered by AETF exhibit strong spatial localization.

Figure 6. The distribution of center means enhanced for each individual source function. Factors are distinguished by color matching
their corresponding representations in Figure 5. Each point is a parameter for an image in a collection of time series. Thirteen clusters
appear consistently within each factor recovering the number of subjects. AETF latent representations implicitly preserve hierarchical
covariance structure and can be used for clustering.

Figure 7. Results for the cubic volume NYU data: (a) a cross section of a frame and the surface highlighting source intensities; R2

values for training (b) and testing (c) for various models averaged across eight cubic volumes using k = 10 source functions. AETF
consistently outperforms both Topographic Factor Analysis (TFA) and Hierarchical Topographic Factor Analysis (HTFA).
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colocated, introduces non-linearity, supports a family of
kernels and the ability to enforce a constrained or non-
negative matrix factorization. AETF preserves a large pro-
portion of variance even when factor positions shift dynam-
ically across observations. Highlights include the ability to
identify autocorrelation structure in a collection of random
fields and the ability to scale to thousands of 3D functional
images with a number of training parameters independent
of dataset size.

The results, in particular Figure (4b), motivate an
explicitly-hierarchical AETF across individuals, as well as
a temporally correlated AETF. A natural extension is to ex-
plore the method of normalizing flows (Rezende & Mo-
hamed, 2015; Kingma et al., 2016) as an alternative to
defining factors by specifying kernels for source functions.
We expect that the approximate posterior would remain
simple to compute while each source is permitted to un-
dergo a sequence of transformations giving rise to complex
and expressive spatial dependencies.

References
Annika, Lang and Jrgen, Potthoff. Fast simulation of gaus-

sian random fields. Monte Carlo Methods and Applica-
tions, 17(3):195–214, 2011.

Candès, Emmanuel J., Li, Xiaodong, Ma, Yi, and Wright,
John. Robust principal component analysis? J. ACM,
58(3):11:1–11:37, June 2011. ISSN 0004-5411. doi:
10.1145/1970392.1970395.

Gershman, Samuel, Blei, David M., Pereira, Francisco, and
Norman, Kenneth A. A topographic latent source model
for fmri data. NeuroImage, 57(1):89–100, 2011. doi:
10.1016/j.neuroimage.2011.04.042.

Gershman, Samuel, Blei, David M., Norman, Kenneth A.,
and Sederberg, Per B. Decomposing spatiotemporal
brain patterns into topographic latent sources. NeuroIm-
age, 98:91–102, 2014. doi: 10.1016/j.neuroimage.2014.
04.055.

J. Friedrich, et al. Fast constrained non-negative matrix
factorization for whole-brain calcium imaging data. In
NIPS workshop on Statistical Methods for Understand-
ing Neural Systems, 2015.

Kingma, Diederik P. and Ba, Jimmy. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014.

Kingma, Diederik P. and Welling, Max. Auto-encoding
variational bayes. CoRR, abs/1312.6114, 2013.

Kingma, Diederik P., Salimans, Tim, Józefowicz, Rafal,
Chen, Xi, Sutskever, Ilya, and Welling, Max. Improv-
ing variational autoencoders with inverse autoregressive
flow. In NIPS, pp. 4736–4744, 2016.

Lee, Daniel D. and Seung, H. Sebastian. Algorithms for
non-negative matrix factorization. In Leen, T. K., Diet-
terich, T. G., and Tresp, V. (eds.), Advances in Neural
Information Processing Systems 13, pp. 556–562. MIT
Press, 2001.

Liang, Dawen, Krishnan, Rahul, Hoffman, Matthew, and
Jebara, Tony. Variational autoencoders for collabora-
tive filtering. In Proceedings of The Web Conference
(WWW), 2018, 2018.

Lopes, Hedibert Freitas, Salazar, Esther, and Gamerman,
Dani. Spatial dynamic factor analysis. Bayesian Anal.,
3(4):759–792, 12 2008. doi: 10.1214/08-BA329.

Manning, Jeremy R., Ranganath, Rajesh, Keung, Waitsang,
Turk-Browne, Nicholas B., Cohen, Jonathan D., Nor-
man, Kenneth A., and Blei, David M. Hierarchical to-
pographic factor analysis. In International Workshop
on Pattern Recognition in Neuroimaging, PRNI 2014,
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