DISCRETE MATHEMATICS: COMBINATORICS AND GRAPH THEORY

Homework 1: Due 10/7

Instructions. Solve any 10 questions. Typeset or write neatly and show your work to receive full credit.

- 1. Tell us a little bit about yourself. Why are you majoring in computer science (or something else)? What is the relationship between mathematics and computer science? Why are you required to take *discrete mathematics*? Why is there an emphasis on problem solving and proofs rather than on memorizing how to perform computations? What do you hope to get out of the course?
- 2. Prove that for every integer x and for every integer y, if x is odd and y is odd then xy is odd. Translate into symbols using quantifiers.
- 3. Given a real number x, let A be the statement $\frac{1}{2} < x < \frac{5}{2}$, let B be the statement $x \in \mathbb{Z}$, let C be the statement $x^2 = 1$, and let D be the statement x = 2. Which statements below are true for all $x \in \mathbb{R}$?
 - (a) $A \to C$
 - (b) $B \to C$
 - (c) $(A \land B) \to C$
 - (d) $(A \land B) \to (C \lor D)$
 - (e) $C \to (A \land B)$
 - (f) $D \to (A \land B \land \neg C)$
 - (g) $(A \lor C) \to B$
- 4. Let P(x) be the assertion "x is odd", and let Q(x) be the assertion " x^2-1 is divisible by 8". Determine whether the following statements are true:
 - (a) $(\forall x \in \mathbb{Z})[P(x) \to Q(x)]$
 - (b) $(\forall x \in \mathbb{Z})[Q(x) \to P(x)]$

Let P(x) be the assertion "x is odd", and let Q(x) be the assertion "x is twice an integer". Determine whether the following statements are true:

- (a) $(\forall x \in \mathbb{Z})[P(x) \to Q(x)]$
- (b) $(\forall x \in \mathbb{Z})((P(x)) \to (\forall x \in \mathbb{Z})(Q(x)))$
- 5. Prove the following by induction. State base case, inductive hypothesis and inductive step to receive full credit.
 - (a) The sum of the first n odd natural numbers equals n^2 .
 - (b) $\forall n \in \mathbb{N}, 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$
 - (c) $\forall n \in \mathbb{N}$, if $n \in \mathbb{N}$, then $n^2 n$ is even.
 - (d) $\forall n \in \mathbb{N}, 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}.$
 - (e) $\forall n \in \mathbb{N}, 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3}$.
- 6. Injections, surjections and bijections.
 - (a) Give an example of a function $f : \mathbb{Z} \to \mathbb{Z}$ where (i) f is one-to-one but not onto; and (ii) f is onto but not one-to-one.
 - (b) For $A = \{1, 2, 3, 4, 5, 6, 7\}$, how many bijective functions $f : A \to A$ satisfy $f(1) \neq 1$? What if $A = \{x | x \in \mathbb{Z}^+, 1 \le x \le n\}$ for some fixed $n \in \mathbb{Z}^+$?

- (c) For $A = (-2,7] \subseteq \mathbb{R}$ define the functions $f, g: A \to \mathbb{R}$ by f(x) = 2x 4 and $g(x) = \frac{2x^2 8}{x+2}$. Verify that f = g. Is the result affected if we change A to [-7,2]?
- 7. Define a function $f : \mathbb{Z} \times \mathbb{Z}^+ \to \mathbb{Q}$ by $f(p,q) = \frac{p}{q}$. Is f (i) injective, (ii) surjective, and (iii) bijective? Prove or disprove.
- 8. Verify whether the function $g : \mathbb{R} \to (0, 1)$ where $g(x) = \frac{1}{1+e^{-x}}$ defines a bijection. Verify whether the function $f : (-\pi/2, \pi/2) \to \mathbb{R}$ with f(x) = tan(x) defines a bijection.
- 9. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined below. Prove that f is one-to-one and onto, and determine f^{-1} .

$$f(x) = \begin{cases} 2x - 1 & \text{if } x > 0\\ -2x & \text{if } x \le 0 \end{cases}$$

- 10. Construct an explicit bijection from the open interval (0, 1) to the closed interval [0, 1].
- 11. Prove the following proposition (hint: use the contrapositive). Suppose a is an integer. If a is odd, then $x^2 + x a^2 = 0$ has no integer solution.
- 12. Prove the following proposition (hint: use proof by contradiction). There does not exist a smallest positive rational number.
- 13. Prove the following:
 - (a) $\sqrt{5}$ is irrational.
 - (b) $\sqrt{20}$ is irrational.
 - (c) $\sqrt{2} + \sqrt{5}$ is irrational.
 - (d) There are infinitely many composite numbers.
- 14. Describe a correspondence between binary real numbers $x = (.b_1b_2b_3\cdots)_2$ in [0,1) and Stern-Brocot real numbers $\alpha = B_1B_2B_3\cdots$ in $[0,\cdots,\infty)$. If x corresponds to α and $x \neq 0$, what number corresponds to 1-x? Give a simple rule for comparing rational numbers based on their representations as L's and R's in the Stern-Brocot number system.
- 15. The Stern-Brocot representation of π is $\pi = R^3 L^7 R^{15} L R^{292} L R L R^2 L R^3 L R^{14} L^2 R \cdots$. Use it to find the simplest rational approximations to π whose denominators are less than 50. Is $\frac{22}{7}$ one of them?
- 16. Show that the union of a countable number of countable sets is countable.
- 17. Use Cantor's diagonalization argument to show that the Cantor set is uncountable.
- 18. Is 1/108 in the Cantor set? What about $\pi/12$? Prove or disprove.
- 19. Show that if S is a set, there does not exist an onto function f from S to $\mathcal{P}(S)$ (the power set of S). Conclude that $|S| < |\mathcal{P}(S)|$. Suppose such a function f existed. Let $T = \{s | s \in S, s \notin f(s)\}$ and show that no element s can exist for which f(s) = T. This is known as Cantor's Theorem.
- 20. We defined Stern's diatomic series as $a_0 = 0, a_1 = 1, a_{2n} = n, a_{2n+1} = a_n + a_{n+1}$. Show that the function $f(x) = \frac{a_n}{a_{n+1}}$ defines a bijection from \mathbb{Z}^+ to \mathbb{Q}^+ .