Exam | Solutions posted
- graded EoW
- HW 2 this week

Today: Relations, Equivalence Classes
We'll look at the notion of relations on a set, a way of comparing two elements of a set.

Def The Cartesian product of two sets A and B denoted $A \times B$

is the set of all ordered pairs where $a \in A$ and $b \in B$.

$A \times B = \{(a, b) \mid a \in A, b \in B\}$

Ex $A = \{1, 2, 3\}$
$B = \{2, 3\}$
$A \times B = \{(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)\}$

Ex $A = \{(x, y, z) \mid z^2 \geq 1, 2, 3\}$
$B = \{1, 2, 3\}$

Def A relation on a set S is a subset $R \subseteq S \times S$. Generally we write:

$x R y \iff (x, y) \in R$

Ex $A = \{1, 2, 3\}$, $R = \{(1, 2), (1, 3), (2, 3)\}$

Suppose we have a set A, and a set R which is a subset of $A \times A$.

Does this represent anything we are familiar with?
Example:
A = \{1,2,3,4,5,6\}
R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),
(2,2), (2,4), (2,6),
(3,3), (3,6),
(4,4),
(5,5),
(6,6)\}

What about R here?

R = \{(x,y) \in A \times A \mid x \neq y\}

Definition:
A directed graph is an ordered pair \(G = (V, E) \)
where \(V \) is a set of vertices (or nodes) and \(E \) is a set of directed pairs of vertices (directed edges).

Digraphs and Relations:

Can use digraphs to express relations.

Example:
A = \{a, b, c, d\}
R = \{(a,a), (a,b), (c,d), (d,c)\}

\(x R y \iff (x \neq y \land x \leq y) \)

Example:
A = \{1, 2, 3, 4, 5, 6\}
\[R \subseteq A \times A \]

B is reflexive if \(\forall x \in A, xRx \)

Examples
- \(\text{set } \{1, 2, 3\} \)
- \(\text{set } \{1, 2, 3\} \)

Non Examples
- \(\text{set } \{1, 2, 3\} \neq \text{non equality} \)
- \(\text{set } \{1, 2, 3\} \)

B is symmetric if \(\forall x, y \in A, (xRy \rightarrow yRx) \)

Examples
- \((xRy \rightarrow yRx) \)

Non Examples
- \(\leq \)
- \(N: \{1\} \) (divisibility)

B is transitive if \(\forall x, y, z \in B, (xRy \land yRz) \rightarrow xRz \)

Examples
- \(\leq \)

Non Examples
- \(\neq \)
- \(1 \neq 2 \land 2 \neq 1 \)
- \(t \neq 1 \)
A relation on a set A is a subset $R \subseteq A \times A$

\[(x, y) \in R\]

Def A relation R is called an equivalence relation if

1. $\forall x \in A, xRx$ (reflexive)
2. $\forall x, y \in A, xRy \implies yRx$ (symmetric)
3. $\forall x, y, z \in A, (xRy \land yRz) \implies xRz$ (transitive)

The equivalence class of $x \in A$ (equivalence class is often denoted by $[x]$)

is $[x] = \{y \in A | xRy\} \subseteq A$

Ex $A = \{-2, 1, 1, 2, 3\}$

<table>
<thead>
<tr>
<th>Relation</th>
<th>Graph</th>
<th>Equivalence Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>equal</td>
<td>![Diagram]</td>
<td>${-2, 3}, {1}, {2}$</td>
</tr>
<tr>
<td>nothing</td>
<td>![Diagram]</td>
<td>${-2, 3}, {1}, {2}$</td>
</tr>
</tbody>
</table>
| partly
 (commutative)
| ![Diagram] | $\{-2, 3\}, \{1\}, \{2\}$ |
| same sign | ![Diagram] | $\{-2, 3\}, \{1\}, \{2\}$ |
Ex

\[A = P(\{3, \cdot, 3\}) \] where \(P(S) \) is the power set of \(S \)

Def: The power set of a set \(S \) is the set of all subsets of \(S \), including the empty set and \(S \) itself.

We can write the elements of the power set ordered with respect to inclusion as a graph.

Remark: The Binomial Theorem, which we will discuss is closely related to the power set.

\[\Rightarrow \] A \(k \)-element subset of some set is a \(k \)-element combination.

\[\Rightarrow \] The binomial coefficient \(\binom{n}{k} \) or \(nCk \) is the number of subsets with \(k \) elements in a set with \(n \) elements.

\[\Rightarrow \] # of sets with \(k \) elements of the power set of a set of \(n \) elements.

\[C(3,0) = 1 \] subset with 0 elements (empty set)

\[C(3,1) = 3 \] subsets \(\{1\} \) (singletons)

\[C(3,2) = 3 \] subsets with 2 elements (complement of empty set)

\[C(3,3) = 1 \] subset of 3 elements (original set)

A combination \(nCk \) or \(C(n,k) \) is given by

\[\frac{n!}{k!(n-k)!} \]
Let A be the power set of the set $S = \{1, 2, 3\}$.

Two subsets are related if they have the same size (cardinality).

\Rightarrow There is not much to check here, since the relation is built on equality (and equality is reflexive, symmetric, transitive).

Let us look at equivalence classes of A under this relation.

$[\emptyset] = \emptyset \emptyset$

$[\{1\}] = \{1\} \{1\}$

$[\{1, 2\}] = \{1, 2\} \{1, 2\}$

$[\{1, 2, 3\}] = \{1, 2, 3\} \{1, 2, 3\}$

All equivalence classes are singletons.

Prop

Suppose R_1, R_2 are both equivalence relations (i.e. $R_1, R_2 \subseteq A \times A$).

Then $R = R_1 \cap R_2$ is an equivalence relation.

(we define a new relation)

Since $R_1, R_2 \subseteq A \times A$, we know $R_1 \cap R_2 \subseteq A \times A$ so this is a relation.

Proof

1. **Reflexivity**: Suppose $x \in A$, we want to show $xRx \ (x, x) \in R$.

2. **Symmetry**: Suppose $xRy \wedge yRx \Rightarrow (x, y) \in R_1 \wedge (y, x) \in R_2 \Rightarrow (x, x) \in R_1 \cap R_2 \Rightarrow xRx \vee yRx$

3. **Transitivity**: Suppose $xRy \wedge yRz \Rightarrow (x, y) \in R_1 \wedge (y, z) \in R_2 \Rightarrow (x, z) \in R_1 \cap R_2 \Rightarrow xRz \vee yRz$.
Transitive Suppose \(xRy \) and \(yRz \) \(\quad (\text{and show } xRz) \)

\[
\Rightarrow (x,y) \in R = R_1 \land R_2 \Rightarrow (x,y) \in R_1 \quad \text{and} \quad (y,z) \in R_2
\]

\[
(y,z) \in R_2 \quad \Rightarrow (y,z) \in R_1 \quad \text{and} \quad (y,z) \in R_2
\]

\[
\Rightarrow xR_1 y \quad \text{and} \quad yR_2 z \quad \Rightarrow xR_1 z \quad \Rightarrow (x,z) \in R_1 \quad \Rightarrow (x,z) \in R_1 \land R_2
\]

\[
xR_1 y \quad \text{and} \quad yR_2 z \quad \Rightarrow xR_2 z \quad \Rightarrow (x,z) \in R_2
\]

\[
\Rightarrow xR_2 z \quad \square
\]

Symmetric

\[
xRy \Rightarrow yRx
\]

\[
(x,y) \in R = R_1 \land R_2 \Rightarrow (x,y) \in R_1 \quad \text{and} \quad (x,y) \in R_2
\]

both \(R_1 \) and \(R_2 \) symmetric so

\[
(y,x) \in R_1 \quad \text{and} \quad (y,x) \in R_2
\]

\[
\Rightarrow (y,x) \in R_1 \land R_2 \Rightarrow yRx \quad \square
\]

Proof: \(R_1 \) \(\Rightarrow \) we say that \(a \) is congruent to \(b \) \(\text{mod } n \) \(\iff n \mid (a-b) \)

\[
g \equiv b \text{ (mod n)} \iff n \mid (a-b)
\]

Def: Given \(n \in \mathbb{N} \) and \(a,b \in \mathbb{Z} \), we say that \(a \) is congruent to \(b \) \(\text{mod } n \) \(\iff n \mid (a-b) \)

(\text{or } a \text{ and } b \text{ have the same remainder when divided by } n)

\(n \) is called the module

\[
8 \equiv 3 \text{ mod } 5 \iff 5 \mid 8-3
\]

\[
20 \equiv 4 \text{ mod } 8 \iff 8 \mid 20-4
\]

\[
13 \equiv -1 \text{ mod } 7 \iff 7 \mid 13+1
\]
Proposition \(\equiv (\text{mod } n) \) is an equivalence relation

That is:

1) \(\forall a \in \mathbb{Z}, a \equiv a (\text{mod } n) \) (reflexivity)

2) \(\forall a, b \in \mathbb{Z}, a \equiv b (\text{mod } n) \Rightarrow b \equiv a (\text{mod } n) \) (symmetric)

3) \(\forall a, b, c \in \mathbb{Z}, a \equiv b (\text{mod } n) \land b \equiv c (\text{mod } n) \Rightarrow a \equiv c (\text{mod } n) \) (transitive)

Thus, the following statements are equivalent:

- \(i) \ a \equiv b (\text{mod } n) \)
- \(ii) \ n \mid (a-b) \)
- \(iii) \ a-b = nt \) for some \(t \in \mathbb{Z} \)
- \(iv) \ a = b + nt \) for some \(t \in \mathbb{Z} \)

Reflexive: since \(a-a = 0 \in \mathbb{Z} \) then \(a \equiv a (\text{mod } n) \)

Symmetric: let \(a, b \in \mathbb{Z} \) s.t. \(a \equiv b (\text{mod } n) \). Then \(a-b = nt \) for some \(t \in \mathbb{Z} \).

\[\Rightarrow \text{multiply both sides by } -1 \Rightarrow b-a = n(-t) \]

Since \((\mathbb{Z}, +)\) a group then \(-t \in \mathbb{Z}\) and so \(b \equiv a (\text{mod } n) \)

Transitive: suppose \(a \equiv b (\text{mod } n) \) and \(b \equiv c (\text{mod } n) \). Then \(a-b = nt \) for some \(t \in \mathbb{Z} \)

\[b-c = nt' \]

\[\Rightarrow a-c = n(t+t') \Rightarrow t+t' \in \mathbb{Z} \Rightarrow a \equiv c (\text{mod } n) \]
Def The equivalence classes for the equivalence relation \(\equiv \) are called **congruence classes**. They are a partition of \(\mathbb{Z} \).

The set of all congruence classes is denoted \(\mathbb{Z}_n \).

Def \(a \equiv b \pmod{n} \) \(\iff \) \(n \mid a-b \)

For \(x \in \mathbb{Z} \) (fixed \(x \)), define the equivalence class of \(x \) with \(\equiv \) \(\equiv \pmod{n} \)

by \([x] = \{ a \in \mathbb{Z} \mid a \equiv x \pmod{n} \} \)

Ex \(n=3 \) \(x=0 \), \([0] = \{ a \in \mathbb{Z} \mid a \equiv 0 \pmod{3} \} \)

all \(a \) in \(\mathbb{Z} \), \(a \equiv 0 \pmod{3} \)

\(\Rightarrow a = 3k \)

\(\Rightarrow 3 \mid a-0 \Rightarrow 3 \mid a \)

Ex equivalence

class of \(1 \)

\([1] = \{ a \in \mathbb{Z} \mid a \equiv 1 \pmod{3} \} \)

\(\Rightarrow \{ 1, 4, 7, 10, \ldots \} \)

\(3 \mid 1-1, 3 \mid 4-1, 3 \mid 7-1, -2, -5 \)

\(3 \mid -2-1, 3 \mid -5-1 \)

\([2] = \{ a \in \mathbb{Z} \mid a \equiv 2 \pmod{3} \} \)

\(\Rightarrow \{ 2, 5, 8, 11, \ldots \} \)

\(3 \mid a-2 \)

We can find all of the integers in one of these three sets. None of these sets overlap.

\(\Rightarrow \) These sets partition the integers.
Fact: There are exactly \(n \) equivalence classes modulo \(n \):
\([0], [1], [2], \ldots, [n-1]\)

Every integer is in one of these equivalence classes.

Def. Fix \(n \), the set of least residues is given by
\([0, 1, \ldots, n-1]\)

Every element in this set of least residues is attached to one of these equivalence classes.

Claim. For all \(a \in \mathbb{Z} \), \(a \equiv a \pmod{n} \) is congruent to exactly one of the least residues modulo \(n \).

\[\implies\] if you are talking about arithmec modulo \(n \), you only need to talk about the numbers \(0, \ldots, n-1 \).

Proof: Use division algorithm \(a = qn + r \) with \(0 \leq r \leq n-1 \)

\[\implies a - r = nq\]
\[\implies n \mid (a - r)\]
\[\implies a \equiv r \pmod{n}\]

\[\implies a = k \cdot n - \text{other number between 0 and } n-1\]

in other words one of these least residues. Note \(qr \) in division algorth is unique \(\implies n = \text{exactly 1} \)