
Discrete Mathematics
COMS 3203 – Fall 2017
http://www.cs.columbia.edu/˜amoretti/3203

Practice Exam # 3

Solve any six problems for full marks. Good luck and don’t panic! If something is taking too long, move
on to the next question. Note that this is a sample exam and while it bears some similarity with the real
exam, the two are not isomorphic.

Problem 1

1. an = 6an−1 − 9an−2 when a0 = 2, a1 = 21

r2 − 6r + 9 = 0 (1)
(r − 3)(r − 3) = 0 (2)

an = α(3)n + β · n · (3)n (3)

a0 = 2 = α(3)0 + β · 0 · (3)0 (4)
α = 2 (5)

a1 = 21 = α(3)1 + β · 1 · (3)1 (6)
21 = 6 + 3β (7)
β = 5 (8)
an = 2(3)n + 5 · n · (3)n (9)

2. an = 4an−1 + 5an−2 when a0 = 2, a1 = 6

r2 − 4r − 5 = 0 (10)
(r + 1)(r − 5) = 0 (11)

an = α(−1)n + β(5)n (12)
a0 = 2 = α+ β (13)
a1 = 6 = −α+ 5β (14)

Add the two equations to solve the system

8 = 6β β =
8

6
, α =

4

6
(15)

an =
4

6
(−1)n +

8

6
(5)n (16)

3. an = 2an−1 + 1 when a1 = 1

a2 = 2 · 1 + 1 = 3 (17)
a3 = 2 · 3 + 1 = 7 (18)
a4 = 2 · 7 + 1 = 15 (19)
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Each value is twice the previous minus one.

an = 2 · 2n − 1 (20)

4. nan = (n− 2)an−1 + 2 when a1 = 1
Recall Gauss’ formula n(n− 1) = 2

∑n
i=1 i. Multiply by (n− 1).

n(n− 1)an = (n− 1)(n− 2)an−1 + 2(n− 1) (21)
= (n− 2)(n− 3)an−2 + 2(n− 2) + 2(n− 1) (22)
= (n− 3)(n− 4)an−3 + 2(n− 3) + 2(n− 2) + 2(n− 1) (23)
= 2(1 + · · ·+ n− 1) (24)

n(n− 1)an = n(n− 1) (25)
an = 1 (26)
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Problem 2

Suppose we select two points randomly on the unit circle x2+y2 = 1. What is the probability that the chord
joining the two points has length at least 1? How many points are necessary to guarantee that between two
of them, there is a chord of length less than 1?

Proof. Consider inscribing equilateral triangles within the unit circle such that each shares a vertex at the
origin and the remaining vertices are located on the circumference of the circle. The radius of the unit circle
is 1 and so for any inscribed triangle, the two remaining vertices define a chord of length 1 and an inscribed
angle θ = 60. Given one point randomly chosen on the circumference, the inscribed angle formed with the
next point chosen must be ≥ 60 degrees in order to define a chord of length ≥ 1. The set of points that
define a chord of length 1, conditioned on the location of a point on the circumference, form an inscribed
angle of 240. The ratio of 240/360 yields 2/3 as the probability. Seven points are needed to guarantee there
is a chord of length less than 1 between them.
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Problem 3

How many members of the set S = {1, 2, 3, · · · , 105} have nontrivial factors in common with 105? Hint:
use the inclusion-exclusion principle.

Proof. 105 has a prime factorization 105 = 3 · 5 · 7, so elements in S will have common factors with 105 if
they are divisible by 3, 5 or 7. Define A as elements of S divisible by 3, B as elements of S divisible by 5 and
C as elements divisible by 7. There are 35 numbers from 1 to 105 divisible by 3 so the subset A contains 35
elements. Similarly there are 21 elements in the subset B and 15 elements in the subset C. Consider A∩B,
the subset of elements divisible by both 3 and 5. There are seven numbers between 1 and 105 divisible by
15 (we had worked this out in checking that our formula for the recurrence in question 1.2 was correct),
therefore |A∩B| = 7. SimilarlyA∩C is the subset of elements divisible by both 3 and 7 (21) andB∩C is the
subset of elements divisible by both 5 and 7 (35). Therefore |A ∩ C| = 5 and |B ∩ C| = 3. The only number
divisible by 105 is 105 so |A ∩B ∩ C| = 1. Applying the inclusion-exclusion principle:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C| (27)
= 35 + 21 + 15− 7− 5− 3 + 1 (28)
= 57 (29)
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Problem 4

The Poisson distribution is defined below.

P (X = x) = e−λ
λx

x!

Show that the variance of the Poisson distribution is equal to its mean (λ).

Proof.

V ar(X) = E(X2)− E(X)2 (30)

= E(X(X − 1) +X)− E(X)2 (31)

Apply linearity of expectation:

= E(X(X − 1)) + E(X)− E(X)2 (32)

Recall E(X) = λ

=

∞∑
x=0

x(x− 1)
e−λλx

x!
+ λ− λ2 (33)

Note
∞∑
x=0

x(x− 1) e
−λλx

x! =
∞∑
x=2

x(x− 1) e
−λλx

x! since the first two values of the series are zero.

=

∞∑
x=2

x(x− 1)
e−λλx

x · (x− 1) · (x− 2)!
+ λ− λ2 (34)

Cancel terms:

=

∞∑
x=2

e−λλx

(x− 2)!
+ λ− λ2 (35)

Express as Taylor series by pulling out λ2:

=

∞∑
x=2

λ2
e−λλx−2

(x− 2)!
+ λ− λ2 (36)

Pull out of the summation and simplify:

= λ2e−λ
∞∑
x=2

λx−2

(x− 2)!
+ λ− λ2 = λ (37)
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Problem 5

Show that EY
(
EX(X|Y )

)
= EX(X).

Proof. Recall Ef(x) =
∑
x
f(x)p(x)

EY
(
EX(X|Y )

)
= EY

(∑
x

x · P (X = x|Y = y)
)

(38)

=
∑
y

(∑
x

x · P (X = x|Y = y)
)
P (Y = y) (39)

Recall P (X,Y ) = P (X|Y )P (Y )

=
∑
y

∑
x

x · P (X = x, Y = y) (40)

=
∑
x

∑
y

x · P (X = x, Y = y) (41)

=
∑
x

x · P (x = x) (42)

= EX(x) (43)
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Problem 6

Consider two Gaussian functions:

f(x) =
1√
2πσ2

f

e−(x−µf )
2/2σ2

f g(x) =
1√
2πσ2

g

e−(x−µg)
2/2σ2

g

Take their product z(x) = f(x) · g(x). Expand terms in the exponent to show that the product is also
a Gaussian function. Hint: you will need to complete the square to factor the polynomial. What is the
mean of z(x) denoted µz and standard deviation σz as a function of µf , µg, σf , σg? Can you derive the
normalization?

z(x) =
1√

4π2σ2
fσ

2
g

exp
{
− (x− µf )2

2σ2
f

− (x− µg)2

2σ2
g

}
(44)

Let γ denote the term in the exponent so that z(x) ∝ e−γ :

γ =
x2 − 2µfx+ µ2

f

2σ2
f

+
x2 − 2µgx+ µ2

g

2σ2
g

(45)

γ =
(x2 − 2µfx+ µ2

f )σ
2
g + (x2 − 2µgx+ µ2

g)σ
2
f

2σ2
fσ

2
g

(46)

We want to show that this is quadratic in x. Let’s organize powers of x:

γ =
(σ2
f + σ2

g)x
2 − 2(µfσ

2
g + µgσ

2
f )x+ µ2

fσ
2
g + µ2

gσ
2
f

2σ2
fσ

2
g

(47)

Divide by (σ2
f + σ2

g)

γ =
x2 − 2

µfσ
2
g+µgσ

2
f

σ2
f+σ

2
g

x+
µ2
fσ

2
g+µ

2
gσ

2
f

σ2
f+σ

2
g

2σ2
fσ

2
g

σ2
f+σ

2
g

(48)

We want to express γ, the exponent of z(x) as (x−µz)2/2σ2
z for functions µz and σz . This requires completing

the square in γ to factorize. Let δ denote the term in the coefficient of x so that δ = µfσ
2
g+µgσ

2
f

σ2
f+σ

2
g

. To complete

the square we need two numbers who sum to −2δ and whose product is δ2.

γ =
x2 − 2x

µfσ
2
g+µgσ

2
f

σ2
f+σ

2
g

+
(µfσ2

g+µgσ
2
f

σ2
f+σ

2
g

)2
2σ2
fσ

2
g

σ2
f+σ

2
g

+

µfσ
2
g+µgσ

2
f

σ2
f+σ

2
g
−
(µfσ2

g+µgσ
2
f

σ2
f+σ

2
g

)2
2σ2
fσ

2
g

σ2
f+σ

2
g

(49)

Simplifying terms:
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γ =

(
x− µfσ

2
g+µgσ

2
f

σ2
f+σ

2
g

)2
2σ2
fσ

2
g

σ2
f+σ

2
g

+
(µf − µg)2

2(σ2
f + σ2

g)
(50)

The mean of z is defined µz =
µfσ

2
g+µgσ

2
f

σ2
f+σ

2
g

and the variance of z is defined σ2
z =

2σ2
fσ

2
g

σ2
f+σ

2
g

. Multiply by σz/σz to

simplify the expression:

f(z) =
1√
2πσ2

z

exp
{
− (x− µz)2

2σ2
z

} 1√
2π(σ2

f + σg)2
exp
{
− (µf − µg)2

2(σ2
f + σ2

g)

}
(51)

This shows that the product of two Gaussians is itself a Gaussian. The normalization on the RHS is also a
Gaussian function.
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Problem 7

A particle moves along 12 points of a circle. At each step, it is equally likely to move one step in the clock-
wise or counterclockwise direction. Can you (i) derive a recurrence relation and (ii) compute the expected
number of steps for the particle to return to its starting position?

This question requires some information on stochastic processes beyond our treatment of probability. You
will not see a question outside of the scope of what we covered on the exam.

1
2

3

4

5

6
7

8

9

10

11

12

Figure 1: Graph of Markov Chain

Consider the following graph where the vertex 1 denotes the starting position of the particle. Define f(v) as
the expected number of steps to return to vertex 1 as a function of position v where v ∈ {1, 2, 3 · · · , 11, 12}.
First observe that can only enter vertex 1 by taking one additional step from the adjacent vertices 2 and 12.
Now observe that the expected number of steps to the origin can be defined as one step plus the expected
number of steps to return to vertices 2 and 12. By linearity of expectation we can define the recurrence:

f(1) = 1 +
1

2
f(2) +

1

2
f(12) (52)

We can express this as follows:

av = 1 +
1

2
av+1 +

1

2
av+11 (53)

We are interested in how this process behaves over time and must distinguish between the first visit to
vertex 1 and subsequent visits. Define a set of states s ∈ {1, 2, 3, · · · , 11, 12, · · · } to denote subsequent visits
to each state so that f(13) defines the expected number of steps to the second visit of 1. Observe that
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f(13) = 0 since the process must move away first. We now have a system of recurrent functions.

f(1) = 1 +
1

2
f(2) +

1

2
f(12) (54)

f(2) = 1 +
1

2
f(3) (55)

f(3) = 1 +
1

2
f(2) +

1

2
f(4) (56)

f(4) = 1 +
1

2
f(3) +

1

2
f(5) (57)

f(5) = 1 +
1

2
f(4) +

1

2
f(6) (58)

f(6) = 1 +
1

2
f(5) +

1

2
f(7) (59)

f(7) = 1 +
1

2
f(6) +

1

2
f(5) (60)

f(8) = 1 +
1

2
f(7) +

1

2
f(9) (61)

f(9) = 1 +
1

2
f(8) +

1

2
f(10) (62)

f(10) = 1 +
1

2
f(9) +

1

2
f(11) (63)

f(11) = 1 +
1

2
f(10) +

1

2
f(12) (64)

f(12) = 1 +
1

2
f(11) (65)

(66)

We can apply the result from the Gambler’s ruin problem to show that the expected number of steps to first
return is 1

1/12 = 12.
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Problem 8

1. Consider the complete graph on five vertices, K5. Is this planar? Prove or disprove.

Figure 2: The Graph of K5

We need an extension of Euler’s theorem that is not in D’Angelo to solve the above. For all planar
graphs, 3|F | ≤ 2|E| where |F | is the number of faces and |E| is the number of edges. Equivalently
|E| ≥ 3

2 × |F |.

Proof. We can use Euler’s formula to prove that the clique K5 is not planar. There are v = 5 vertices
and e = 10 edges so Euler’s formula implies that there should be f = 7 faces. By the above for any
planar graph e ≥ 3

2 × f implying that K5 must have at least 3
2 × 7 = 10.5 edges. There are 10 < 10.5

edges therefore K5 cannot be planar.
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