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Practice Exam # 2

Problem 1

1. Recall:
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Problem 2

1. Prove thatif ' = a mod n and ¥’ = b mod n then (¢’ mod n) - (b’ mod n) = (a - b) mod n.
Proof. By Euclid Jintegers ¢, v, o, 7p such that a = ¢,n+r, and b = gyn + 1. Plugging into the RHS:
(qan +74)(gon + rp)mod n = (gaquyn® + qarpn + Taqen + r47p)mod n (12)

All of these terms are divisible by n except for the remainder 7,7, and therefore ab mod n = r,r, mod
n. Inspecting the LHS of the congruence confirms that this is what we need to show. O

Problem 3

1. Consider the set R* defined as R — {0}. Is (R*, +) a group? What about (R, x)?

(R*, +) has no additive identity e = 0 such that a+e = a Va € R*. (R, x) has no multiplicative inverse

for 0 so that a x a=! = e. To see this, note that the multiplicative identity e = 1 satisfies a x e = a

Va € R,butthat0 x b =0 # e Vb € R. Therefore Va ¢ R fa~'st.axa ! =e.

2. Let S = R — {—1} and define the operationa *b = a + b+ a x b. Is (S, *) a group? Prove or provide a

counter example.

Proof. We need to check the four axioms below:

(a) Va,be S,axbe S
(b) Va,b,ce S, ax(bxc)=(axb)*c
(c) deeSst.exa=a=axeVa€eS

(d) Vae S, FateSst.alxa=e=axa "

Closure is trivial, as is the associative property.

ax(b+c+bc)=a+b+c+bc+ ab+ ac+ abe (13)
(a+b+ab)xc=a+b+ab+ c+ ac+ bc+ abc (14)

The identity element a * e = a is e = 0 which is verified by applying the definition of the operation:
at+etae=a=e+ae=0=e(l+a)=0=¢=0 (15)

Similarly we can derive the inverse as follows:

—a
14+a

axb=0=a+bt+ab=0=b+ab=—-a=0b1+a)=—-a=0b= (16)

This is well defined on § =R — {—1}. O



Problem 4

Consider Z,, and the function f, : Z, — Z, defined f,(x) = ax. Write the functional digraph when a = 3
and p = 11. What do you notice about the cycle lengths? What happens when ¢ = 4 and p = 17?

A :L\
J S %/ o
@< 40 l

o P Le——2

Figure 1: Functional Digraph for f5 : Z11 — Z11
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Figure 2: Functional Digraph for fy : Z17 — Z17

Notice that all cycles have the same length excluding zero. When p is prime and a # 0 mod p, there is a
positive integer k such that for all z € Z, where = # 0, the set S, = {z, za,za?, - - - } has exactly k elements.



Problem 5

1. a?~! = 1( mod p), multiply by a to verify the second formula is correct. Any Carmichael number will
satisfy Fermat'’s Little Theorem. For example, try 561 = 3 x 11 x 17.

2. Take x = 2 mod 4 and = = 1 mod 2 which has no solution, and z = 2 mod 4 and z = 2 mod 6 for two
solutions mod 24 which are 2 and 14.

Problem 6

Euler’s Totient function ¢(m) counts the numbers up to m relatively prime to m. Prove for any prime p:

o) = = = o= 1) = (1= ) a7)

Proof. First note that if p is prime, then 1,2, --- ,p — 1 are all relatively prime to p. Therefore ¢(p) = p — 1.
We now need to consider powers of primes. An integer = € Z is relatively prime to p* if and only if it is

not divisible by p. That is, gcd(z,p*) = 1iff p { x. Within the interval [0, p* — 1] there are p*~! integers

not relatively prime to p. That is, np integers where n = 0, 1,2, ,---pF~! — 1 not relatively prime to p with

p* —p*~1 integers relatively prime to p. Therefore ¢(p*) = p* —p*~1. Factor out p* to complete the proof. [

Problem 7

By the fundamental theorem of arithmetic, n can be factorized into m prime numbers.
m
ki ki k -
n=[]pl" =pips? - ply (18)
i=1

Use this to show that for n € Z where n > 1:

gb(n):n(lfpil)(l—i)u'(l—]%) (19)

Proof. We can use the result given in class that the Totient of the product of two relatively prime numbers

is the product of their Totient. That is, when m = mymg and ged(mq, me) = 1:
¢(m) = ¢(m1)p(mz) (20)
Repeatedly applying this result:
¢(my - -my) = ¢(m1)p(mz) - - () 1)

We know that ¢(p*) = p*(1 — 1) and so we can conclude ¢(n) =n [[(1 - 1) O
pin



