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Practice Exam # 2

Problem 1

1. Recall:
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2. Use the Geometric series:
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3. Expand:
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Therefore:
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Problem 2

1. Prove that if a0 ⌘ a mod n and b

0 ⌘ b mod n then (a0 mod n) · (b0 mod n) ⌘ (a · b) mod n.

Proof. By Euclid 9 integers q
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. Plugging into the RHS:
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All of these terms are divisible by n except for the remainder r
a

r

b

, and therefore ab mod n = r

a

r

b

mod
n. Inspecting the LHS of the congruence confirms that this is what we need to show.

Problem 3

1. Consider the set R⇤ defined as R� {0}. Is (R⇤
,+) a group? What about (R,⇥)?

(R⇤
,+) has no additive identity e = 0 such that a+e = a 8a 2 R⇤. (R,⇥) has no multiplicative inverse

for 0 so that a ⇥ a

�1 = e. To see this, note that the multiplicative identity e = 1 satisfies a ⇥ e = a

8a 2 R, but that 0⇥ b = 0 6= e 8b 2 R. Therefore 8a 2 R @a�1 s.t. a⇥ a

�1 = e.

2. Let S = R� {�1} and define the operation a ⇤ b = a+ b+ a⇥ b. Is (S, ⇤) a group? Prove or provide a
counter example.

Proof. We need to check the four axioms below:

(a) 8a, b 2 S , a ⇤ b 2 S

(b) 8a, b, c 2 S , a ⇤ (b ⇤ c) = (a ⇤ b) ⇤ c

(c) 9e 2 S s.t. e ⇤ a = a = a ⇤ e 8a 2 S

(d) 8a 2 S , 9a�1 2 S s.t. a�1 ⇤ a = e = a ⇤ a�1.

Closure is trivial, as is the associative property.

a ⇤ (b+ c+ bc) = a+ b+ c+ bc+ ab+ ac+ abc (13)

(a+ b+ ab) ⇤ c = a+ b+ ab+ c+ ac+ bc+ abc (14)

The identity element a ⇤ e = a is e = 0 which is verified by applying the definition of the operation:

a+ e+ ae = a =) e+ ae = 0 =) e(1 + a) = 0 =) e = 0 (15)

Similarly we can derive the inverse as follows:

a ⇤ b = 0 =) a+ b+ ab = 0 =) b+ ab = �a =) b(1 + a) = �a =) b =
�a

1 + a

(16)

This is well defined on S = R� {�1}.
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Problem 4

Consider Z
p

and the function f

a

: Z
p

! Z
p

defined f

a

(x) = ax. Write the functional digraph when a = 3

and p = 11. What do you notice about the cycle lengths? What happens when a = 4 and p = 17?

Figure 1: Functional Digraph for f3 : Z11 ! Z11

Figure 2: Functional Digraph for f4 : Z17 ! Z17

Notice that all cycles have the same length excluding zero. When p is prime and a 6⌘ 0 mod p, there is a
positive integer k such that for all x 2 Z

p

where x 6= 0, the set S
x

= {x, xa, xa2, · · · } has exactly k elements.
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Problem 5

1. a

p�1 ⌘ 1( mod p), multiply by a to verify the second formula is correct. Any Carmichael number will
satisfy Fermat’s Little Theorem. For example, try 561 = 3⇥ 11⇥ 17.

2. Take x ⌘ 2 mod 4 and x ⌘ 1 mod 2 which has no solution, and x ⌘ 2 mod 4 and x ⌘ 2 mod 6 for two
solutions mod 24 which are 2 and 14.

Problem 6

Euler’s Totient function �(m) counts the numbers up to m relatively prime to m. Prove for any prime p:
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k�1(p� 1) = p
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Proof. First note that if p is prime, then 1, 2, · · · , p � 1 are all relatively prime to p. Therefore �(p) = p � 1.
We now need to consider powers of primes. An integer x 2 Z is relatively prime to p

k if and only if it is
not divisible by p. That is, gcd(x, pk) = 1 iff p - x. Within the interval [0, pk � 1] there are p

k�1 integers
not relatively prime to p. That is, np integers where n = 0, 1, 2, , · · · pk�1 � 1 not relatively prime to p with
p

k�p

k�1 integers relatively prime to p. Therefore �(pk) = p

k�p

k�1. Factor out pk to complete the proof.

Problem 7

By the fundamental theorem of arithmetic, n can be factorized into m prime numbers.
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Use this to show that for n 2 Z where n > 1:
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Proof. We can use the result given in class that the Totient of the product of two relatively prime numbers
is the product of their Totient. That is, when m = m1m2 and gcd(m1,m2) = 1:

�(m) = �(m1)�(m2) (20)

Repeatedly applying this result:

�(m1 · · ·mr

) = �(m1)�(m2) · · ·�(mr

) (21)

We know that �(pk) = p

k(1� 1
p

) and so we can conclude �(n) = n
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