Discrete Mathematics

COMS 3203 - Fall 2017
http://www.cs.columbia.edu/~amoretti/3203

Practice Exam \# 2

Problem 1

1. Recall:

$$
\begin{align*}
\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k} & =(p+q)^{n} \tag{1}\\
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} & =(p+(1-p))^{n}=1 \tag{2}
\end{align*}
$$

2. Use the Geometric series:

$$
\begin{equation*}
\sum_{k=0}^{\infty} p(1-p)^{k}=p \sum_{k=0}^{\infty}(1-p)^{k}=p\left(\frac{1}{1-(1-p)}\right)=\frac{p}{p}=1 \tag{4}
\end{equation*}
$$

3. Expand:

$$
\begin{align*}
\binom{k+r-1}{k} & =\frac{(k+r-1)!}{k!(k+r-1-k)!} \tag{5}\\
& =\frac{(k+r-1)(k+r-2) \cdots(r) \cdots 1}{k!(k+r-1-\not k)!} \tag{6}\\
& =\frac{(k+r-1)(k+r-2) \cdots(r) \cdots 1}{k!(r-1)!} \tag{7}\\
& =\frac{(k+r-1)(k+r-2) \cdots(r)}{k!} \tag{8}\\
& =(-1)^{k} \frac{(-r)(-r-1) \cdots(-r-k+1)}{k!}=(-1)^{k}\binom{-r}{k} \tag{9}
\end{align*}
$$

Therefore:

$$
\begin{align*}
(1-p)^{-r} & =\sum_{k=0}^{\infty}\binom{-r}{k}(-p)^{k}=\sum_{k=0}^{\infty}\binom{k+r-1}{k} p^{k} \tag{10}\\
\sum_{k=0}^{\infty}\binom{k+r-1}{k}(1-p)^{r} p^{k} & =(1-p)^{r}(1-p)^{-r}=1 \tag{11}
\end{align*}
$$

Problem 2

1. Prove that if $a^{\prime} \equiv a \bmod n$ and $b^{\prime} \equiv b \bmod n$ then $\left(a^{\prime} \bmod n\right) \cdot\left(b^{\prime} \bmod n\right) \equiv(a \cdot b) \bmod n$.

Proof. By Euclid \exists integers $q_{a}, q_{b}, r_{a}, r_{b}$ such that $a=q_{a} n+r_{a}$ and $b=q_{b} n+r_{b}$. Plugging into the RHS:

$$
\begin{equation*}
\left(q_{a} n+r_{a}\right)\left(q_{b} n+r_{b}\right) \bmod n=\left(q_{a} q_{b} n^{2}+q_{a} r_{b} n+r_{a} q_{b} n+r_{a} r_{b}\right) \bmod n \tag{12}
\end{equation*}
$$

All of these terms are divisible by n except for the remainder $r_{a} r_{b}$, and therefore $a b \bmod n=r_{a} r_{b} \bmod$ n. Inspecting the LHS of the congruence confirms that this is what we need to show.

Problem 3

1. Consider the set \mathbb{R}^{*} defined as $\mathbb{R}-\{0\}$. Is $\left(\mathbb{R}^{*},+\right)$ a group? What about (\mathbb{R}, \times) ?
$\left(\mathbb{R}^{*},+\right)$ has no additive identity $e=0$ such that $a+e=a \forall a \in \mathbb{R}^{*} .(\mathbb{R}, \times)$ has no multiplicative inverse for 0 so that $a \times a^{-1}=e$. To see this, note that the multiplicative identity $e=1$ satisfies $a \times e=a$ $\forall a \in \mathbb{R}$, but that $0 \times b=0 \neq e \forall b \in \mathbb{R}$. Therefore $\forall a \in \mathbb{R} \nexists a^{-1}$ s.t. $a \times a^{-1}=e$.
2. Let $\mathcal{S}=\mathbb{R}-\{-1\}$ and define the operation $a * b=a+b+a \times b$. Is ($\mathcal{S}, *)$ a group? Prove or provide a counter example.

Proof. We need to check the four axioms below:
(a) $\forall a, b \in \mathcal{S}, a * b \in \mathcal{S}$
(b) $\forall a, b, c \in \mathcal{S}, a *(b * c)=(a * b) * c$
(c) $\exists e \in \mathcal{S}$ s.t. $e * a=a=a * e \forall a \in \mathcal{S}$
(d) $\forall a \in \mathcal{S}, \exists a^{-1} \in \mathcal{S}$ s.t. $a^{-1} * a=e=a * a^{-1}$.

Closure is trivial, as is the associative property.

$$
\begin{align*}
& a *(b+c+b c)=a+b+c+b c+a b+a c+a b c \tag{13}\\
& (a+b+a b) * c=a+b+a b+c+a c+b c+a b c \tag{14}
\end{align*}
$$

The identity element $a * e=a$ is $e=0$ which is verified by applying the definition of the operation:

$$
\begin{equation*}
a+e+a e=a \Longrightarrow e+a e=0 \Longrightarrow e(1+a)=0 \Longrightarrow e=0 \tag{15}
\end{equation*}
$$

Similarly we can derive the inverse as follows:

$$
\begin{equation*}
a * b=0 \Longrightarrow a+b+a b=0 \Longrightarrow b+a b=-a \Longrightarrow b(1+a)=-a \Longrightarrow b=\frac{-a}{1+a} \tag{16}
\end{equation*}
$$

This is well defined on $\mathcal{S}=\mathbb{R}-\{-1\}$.

Problem 4

Consider \mathbb{Z}_{p} and the function $f_{a}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ defined $f_{a}(x)=a x$. Write the functional digraph when $a=3$ and $p=11$. What do you notice about the cycle lengths? What happens when $a=4$ and $p=17$?

Figure 1: Functional Digraph for $f_{3}: \mathbb{Z}_{11} \rightarrow \mathbb{Z}_{11}$

Figure 2: Functional Digraph for $f_{4}: \mathbb{Z}_{17} \rightarrow \mathbb{Z}_{17}$

Notice that all cycles have the same length excluding zero. When p is prime and $a \not \equiv 0 \bmod p$, there is a positive integer k such that for all $x \in \mathbb{Z}_{p}$ where $x \neq 0$, the set $S_{x}=\left\{x, x a, x a^{2}, \cdots\right\}$ has exactly k elements.

Problem 5

1. $a^{p-1} \equiv 1(\bmod p)$, multiply by a to verify the second formula is correct. Any Carmichael number will satisfy Fermat's Little Theorem. For example, try $561=3 \times 11 \times 17$.
2. Take $x \equiv 2 \bmod 4$ and $x \equiv 1 \bmod 2$ which has no solution, and $x \equiv 2 \bmod 4$ and $x \equiv 2 \bmod 6$ for two solutions mod 24 which are 2 and 14 .

Problem 6

Euler's Totient function $\phi(m)$ counts the numbers up to m relatively prime to m. Prove for any prime p :

$$
\begin{equation*}
\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1)=p^{k}\left(1-\frac{1}{p}\right) \tag{17}
\end{equation*}
$$

Proof. First note that if p is prime, then $1,2, \cdots, p-1$ are all relatively prime to p. Therefore $\phi(p)=p-1$. We now need to consider powers of primes. An integer $x \in \mathbb{Z}$ is relatively prime to p^{k} if and only if it is not divisible by p. That is, $\operatorname{gcd}\left(x, p^{k}\right)=1$ iff $p \nmid x$. Within the interval $\left[0, p^{k}-1\right]$ there are p^{k-1} integers not relatively prime to p. That is, $n p$ integers where $n=0,1,2,, \cdots p^{k-1}-1$ not relatively prime to p with $p^{k}-p^{k-1}$ integers relatively prime to p. Therefore $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$. Factor out p^{k} to complete the proof.

Problem 7

By the fundamental theorem of arithmetic, n can be factorized into m prime numbers.

$$
\begin{equation*}
n=\prod_{i=1}^{m} p_{i}^{k_{i}}=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}} \tag{18}
\end{equation*}
$$

Use this to show that for $n \in \mathbb{Z}$ where $n>1$:

$$
\begin{equation*}
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{m}}\right) \tag{19}
\end{equation*}
$$

Proof. We can use the result given in class that the Totient of the product of two relatively prime numbers is the product of their Totient. That is, when $m=m_{1} m_{2}$ and $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$:

$$
\begin{equation*}
\phi(m)=\phi\left(m_{1}\right) \phi\left(m_{2}\right) \tag{20}
\end{equation*}
$$

Repeatedly applying this result:

$$
\begin{equation*}
\phi\left(m_{1} \cdots m_{r}\right)=\phi\left(m_{1}\right) \phi\left(m_{2}\right) \cdots \phi\left(m_{r}\right) \tag{21}
\end{equation*}
$$

We know that $\phi\left(p^{k}\right)=p^{k}\left(1-\frac{1}{p}\right)$ and so we can conclude $\phi(n)=n \prod_{p \nmid n}\left(1-\frac{1}{p}\right)$

