Discrete Mathematics

COMS 3203 - Fall 2017
http://www.cs.columbia.edu/~amoretti/3203

Practice Exam \# 1 Solution

Problem 1

1.

$$
\begin{equation*}
\forall n \in \mathbb{N} \quad \sum_{i=1}^{n} i^{3}=\frac{(n(n+1))^{2}}{4} \tag{1}
\end{equation*}
$$

Base case $n=1$:

$$
\begin{equation*}
1^{3}=\frac{(1 \times 2)^{2}}{4}=\frac{4}{4}=1 \tag{2}
\end{equation*}
$$

Assume true for n, check $n+1$:

$$
\begin{align*}
1^{3}+2^{3}+\cdots+n^{3}+(n+1)^{3} & =\frac{(n(n+1))^{2}}{4}+(n+1)^{3} \quad \text { by } I . H . \tag{3}\\
& =(n+1)^{2} \times \frac{n+4 n+4}{4} \tag{4}\\
& =(n+1)^{2} \times \frac{(n+2)^{2}}{4} \tag{5}
\end{align*}
$$

2.

$$
\begin{equation*}
\forall n \in \mathbb{N} \text { such that } n \geq 4 \quad n!>2^{n} \tag{6}
\end{equation*}
$$

Base case $n=4$:

$$
\begin{equation*}
4!=24>16=2^{4} \tag{7}
\end{equation*}
$$

Assume true for n, check $n+1$:

$$
\begin{align*}
1 \times 2 \times \cdots(n-1) \times n \times(n+1) & >2^{n} \times(n+1) \quad \text { by I.H. } \tag{8}\\
& >2^{n} \times 2=2^{n+1} \tag{9}
\end{align*}
$$

3. Prove for all $n \in \mathbb{N}$:

$$
\begin{equation*}
(\cos x+i \sin x)^{n}=\cos (n x)+i \sin (n x) \tag{10}
\end{equation*}
$$

Base case $n=1$:

$$
\begin{equation*}
(\cos x+i \sin x)=\cos (x)+i \sin (x) \tag{11}
\end{equation*}
$$

Assume true for n, check $n+1$:

FOIL terms:

$$
\begin{align*}
& =\cos (n x) \cos (x)+i \cos (n x) \sin (x)+i \sin (n x) \cos (x)+i^{2} \sin (n x) \sin (x) \tag{14}\\
& =\underbrace{(\cos (n x) \cos (x)-\sin (n x) \sin (x))}_{\cos (n x+x)}+i \underbrace{(\cos (n x) \sin (x)+\sin (n x) \cos (x))}_{\sin (n x+x)} \tag{15}
\end{align*}
$$

Using $\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)$ and $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$:

$$
\begin{equation*}
=\cos (n x+x)+i \sin (n x+x) \tag{16}
\end{equation*}
$$

Problem 2

Let \mathbb{R} be the set of real numbers and \mathbb{Z} be the set of integers. Define a relation $x \sim y$ on \mathbb{R} denoted $x R y$ $\forall x, y \in \mathbb{R}$:

$$
\begin{equation*}
x-y \in \mathbb{Z} \tag{18}
\end{equation*}
$$

Proof. Reflexive: We need to show $\forall x \in \mathbb{R}, x R x$. Note that $x-x=0$ and $0 \in \mathbb{Z} \Longrightarrow x \sim x$. Symmetric: Define $w=x-y$. Then $y-x=-w$ and $-w \in \mathbb{Z}$ so $x \sim y$ and $y \sim x$. Transitive: Let $a, b, c \in \mathbb{R}$. Suppose $a \sim b$ and $b \sim c$, then $a-b \in \mathbb{Z}$ and $b-c \in \mathbb{Z}$. Define $m=a-b$ and $n=b-c$ and note that $m, n \in \mathbb{Z}$. Then $a-c=a-b+b-c=m+n \in \mathbb{Z}$.

Problem 3

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Prove that their composition $h=(g \circ f): A \rightarrow C$ is a bijection by showing i) h is injective and ii) h is surjective.

Proof. Let's prove that $(g \circ f)(A)$ is surjective, meaning every element in the image is mapped onto.

$$
\begin{align*}
h(A) & =(g \circ f)(A) \tag{19}\\
& =\{c \in C \mid(g \circ f)(a)=c, \text { for some } a \in A\} \tag{20}\\
& =\{c \in C \mid g(f(a))=c, \text { for some } a \in A\} \tag{21}\\
& =\{c \in C \mid g(b)=c, \text { for some } b \in B\} \tag{22}\\
& =g(f(A)) \quad \text { by definition } \tag{23}\\
& =g(B) \tag{24}\\
& =C \tag{25}
\end{align*}
$$

We need to show that $(g \circ f)(A)$ is injective, meaning if $h(a)=h\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}$. Suppose $h(a)=h\left(a^{\prime}\right)$. By definition this implies that $g(f(a))=g\left(f\left(a^{\prime}\right)\right)$. We know that both g, f are injective (they are bijections) and so $g(f(a))=g\left(f\left(a^{\prime}\right)\right) \Longrightarrow f(a)=f\left(a^{\prime}\right)$ and so $a=a^{\prime}$.

Problem 4

$$
\begin{equation*}
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \forall x_{6} \exists x_{7} \forall x_{8} \exists x_{9}\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{4} \vee \neg x_{5} \vee x_{3}\right) \wedge\left(x_{6} \vee \neg x_{1} \vee x_{7}\right) \wedge\left(x_{2} \vee \neg x_{8} \vee \neg x_{1}\right) \wedge\left(x_{5} \vee x_{6} \vee \neg x_{9}\right) \tag{26}
\end{equation*}
$$

Set all variables False.

Problem 5

Recall the Fibonacci numbers were defined:

$$
F_{n}= \begin{cases}1 & n=0 \\ 1 & n=1 \\ F_{n-1}+F_{n-2} & n>1\end{cases}
$$

Denote $\phi=(1+\sqrt{5}) / 2$ and prove that $\forall n \in \mathbb{N}$,

$$
\begin{equation*}
F_{n} \leq \phi^{n} \tag{27}
\end{equation*}
$$

Base case $n=0,1$:

$$
\begin{align*}
& 1 \leq 1 \tag{28}\\
& 1 \leq \frac{1+\sqrt{5}}{2} \tag{29}
\end{align*}
$$

Assume $P(j)$ true $\forall j$ such that $0 \leq j<k$ and show this implies $P(k)$ true:

$$
\begin{array}{rlr}
F_{k} & =F_{k-1}+F_{k-2} \quad \text { by definition } \\
& \leq \phi^{k-1}+\phi^{k-2} \quad \text { by I.H. } \\
& =\phi^{k-2}(\phi+1) & \tag{32}
\end{array}
$$

Note $\phi^{2}=\frac{6+2 \sqrt{5}}{4}=\frac{3+\sqrt{5}}{2}=1+\frac{1+\sqrt{5}}{2}=1+\phi$

$$
\begin{align*}
& =\phi^{k-2} \phi^{2} \tag{33}\\
& =\phi \tag{34}
\end{align*}
$$

Problem 6

Recall that a function is convex if $\forall x_{1}, x_{2} \in X$ and $\forall t \in[0,1]$:

$$
\begin{equation*}
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \tag{35}
\end{equation*}
$$

where the ($\mathrm{n}=2$ above) weights sum to 1 (that is, $t_{1}+\cdots+t_{n}=1$). Prove that if f is convex, then:

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \leq \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{36}
\end{equation*}
$$

Proof. Base case: $n=2$ is correct by the definition of a convex function above. We now assume true for k and check $k+1$:

$$
\begin{align*}
f\left(\sum_{i=1}^{n+1} t_{i} x_{i}\right) & =f\left(t_{n+1} x_{n+1}+\sum_{i=1}^{n} t_{i} x_{i}\right) \tag{37}\\
& =f\left(t_{n+1} x_{n+1}+\left(1-t_{n+1}\right) \frac{1}{\left(1-t_{n+1}\right)} \sum_{i=1}^{n} t_{i} x_{i}\right) \tag{38}\\
& \leq t_{n+1} f\left(x_{n+1}\right)+\left(1-t_{n+1}\right) f\left(\frac{1}{\left(1-t_{n+1}\right)} \sum_{i=1}^{n} t_{i} x_{i}\right) \quad \text { by I.H. } \tag{39}\\
& =t_{n+1} f\left(x_{n+1}\right)+\left(1-t_{n+1}\right) f\left(\sum_{i=1}^{n} \frac{t_{i}}{\left(1-t_{n+1}\right)} x_{i}\right) \tag{40}\\
& \leq t_{n+1} f\left(x_{n+1}\right)+\left(1-t_{n+1}\right) \sum_{i=1}^{n} \frac{t_{i}}{\left(1-t_{n+1}\right)} f\left(x_{i}\right) \quad \text { by I.H. } \tag{41}\\
& =t_{n+1} f\left(x_{n+1}\right)+\sum_{i=1}^{n} t_{i} f\left(x_{i}\right) \tag{42}\\
& =\sum_{i=1}^{n+1} t_{i} f\left(x_{i}\right) \tag{43}
\end{align*}
$$

