Discrete Mathematics

COMS 3203 - Fall 2017
http://www.cs.columbia.edu/~amoretti/3203

Practice Exam \# 3

Solve any six problems for full marks. Good luck and don't panic! If something is taking too long, move on to the next question. Note that this is a sample exam and while it bears some similarity with the real exam, the two are not isomorphic.

Problem 1

Solve three of the following recurrences:

1. $a_{n}=6 a_{n-1}-9 a_{n-2}$ when $a_{0}=2, a_{1}=21$
2. $a_{n}=4 a_{n-1}-5 a_{n-2}$ when $a_{0}=2, a_{1}=6$
3. $a_{n}=2 a_{n-1}+1$ when $a_{1}=1$
4. $n a_{n}=(n-2) a_{n-1}+2$ when $a_{1}=1$

Problem 2

Suppose we select two points randomly on the unit circle $x^{2}+y^{2}=1$. What is the probability that the chord joining the two points has length at least 1 ? How many points are necessary to guarantee that between two of them, there is a chord of length less than 1 ?

Problem 3

How many members of the set $S=\{1,2,3, \cdots, 105\}$ have nontrivial factors in common with 105? Hint: use the inclusion-exclusion principle.

Problem 4

The Poisson distribution is defined below.

$$
P(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

Show that the variance of the Poisson distribution is equal to its mean (λ). Hint: use the computational formula for variance.

Problem 5

Show that $\mathbb{E}_{Y}\left(\mathbb{E}_{X}(X \mid Y)\right)=\mathbb{E}_{X}(X)$.

Problem 6

Consider two Gaussian functions:

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma_{f}^{2}}} e^{-\left(x-\mu_{f}\right)^{2} / 2 \sigma_{f}^{2}} \quad g(x)=\frac{1}{\sqrt{2 \pi \sigma_{g}^{2}}} e^{-\left(x-\mu_{g}\right)^{2} / 2 \sigma_{g}^{2}}
$$

Take their product $z(x)=f(x) \cdot g(x)$. Expand terms in the exponent to show that the product is also a Gaussian function. Hint: you will need to complete the square to factor the polynomial. What is the mean of $z(x)$ denoted μ_{z} and standard deviation σ_{z} as a function of $\mu_{f}, \mu_{g}, \sigma_{f}, \sigma_{g}$? Can you derive the normalization?

Problem 7

A particle moves along 12 points of a circle. At each step, it is equally likely to move one step in the clockwise or counterclockwise direction. Can you (i) derive a recurrence relation and (ii) compute the expected number of steps for the particle to return to its starting position?

Problem 8

1. Draw a connected planar graph with 4 faces, degrees: $3,3,4,4$. Is there only one isomorphic graph?
2. Consider the complete graph on five vertices, K_{5}. Is this planar? Prove or disprove.

Figure 1: The Graph of K_{5}

