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Practice Exam # 2

Solve any five problems for full marks. Good luck and don’t panic! If something is taking too long, move
on to the next question. Note that this is a sample exam and while it bears some similarity with the real

exam, the two are not isomorphic.

Problem 1
Evaluate the three expressions below.
1. Hint: use the Binomial Theorem:
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2. Hint: use the Geometric series:
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3. Hint: use the Binomial Theorem:
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Problem 2
1. Prove thatif a’ = a mod n and ¥’ = b mod n then (¢’ mod n) - (b’ mod n) = (a - b) mod n.

2. Does this operation define a group? Prove or disprove.

Problem 3

1. Consider the set R* defined as R — {0}. Is (R*, +) a group? What about (R, x)? Prove or provide a

counter example.

2. Let S = R — {—1} and define the operation a *b = a + b+ a x b. Is (S, *) a group? Prove or provide a

counter example.

Problem 4

Consider Z,, and the function f, : Z, — Z, defined f,(x) = ax. Write the functional digraph when a = 3
and p = 11. What do you notice about the cycle lengths? What happens when ¢ =4 and p = 17?
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Problem 5
1. Fermat’s Little Theorem states that a?~! — 1 is an integer multiple of p:
a?~!' = 1( mod p) 4)

Use this to show that a” = a( mod p). Give an example of an integer which satisfies Fermat’s Little
Theorem but is not prime.

2. Find an example of integers m, n, a,b where ged(m,n) # 1 so that z = a( mod m) and x = b( mod n)
has no solutions, and an example of m, n, a, b as above where the system has more than one solution.

Problem 6

Euler’s Totient function ¢(m) counts the numbers up to m relatively prime to m. Prove for any prime p:
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Problem 7

By the fundamental theorem of arithmetic, n can be factorized into m prime numbers.
m
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Use this to show that for n € Z where n > 1:
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