Discrete Mathematics

COMS 3203 - Fall 2017
http://www.cs.columbia.edu/~amoretti/3203

Practice Exam \# 2

Solve any five problems for full marks. Good luck and don't panic! If something is taking too long, move on to the next question. Note that this is a sample exam and while it bears some similarity with the real exam, the two are not isomorphic.

Problem 1

Evaluate the three expressions below.

1. Hint: use the Binomial Theorem:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \tag{1}
\end{equation*}
$$

2. Hint: use the Geometric series:

$$
\begin{equation*}
\sum_{k=0}^{\infty} p(1-p)^{k} \tag{2}
\end{equation*}
$$

3. Hint: use the Binomial Theorem:

$$
\begin{equation*}
\sum_{k=0}^{\infty}\binom{k+s-1}{k}(1-a)^{s} a^{k} \tag{3}
\end{equation*}
$$

Problem 2

1. Prove that if $a^{\prime} \equiv a \bmod n$ and $b^{\prime} \equiv b \bmod n$ then $\left(a^{\prime} \bmod n\right) \cdot\left(b^{\prime} \bmod n\right) \equiv(a \cdot b) \bmod n$.
2. Does this operation define a group? Prove or disprove.

Problem 3

1. Consider the set \mathbb{R}^{*} defined as $\mathbb{R}-\{0\}$. Is $\left(\mathbb{R}^{*},+\right)$ a group? What about (\mathbb{R}, \times) ? Prove or provide a counter example.
2. Let $\mathcal{S}=\mathbb{R}-\{-1\}$ and define the operation $a * b=a+b+a \times b$. Is ($\mathcal{S}, *)$ a group? Prove or provide a counter example.

Problem 4

Consider \mathbb{Z}_{p} and the function $f_{a}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ defined $f_{a}(x)=a x$. Write the functional digraph when $a=3$ and $p=11$. What do you notice about the cycle lengths? What happens when $a=4$ and $p=17$?

Problem 5

1. Fermat's Little Theorem states that $\mathrm{a}^{p-1}-1$ is an integer multiple of p :

$$
\begin{equation*}
a^{p-1} \equiv 1(\bmod p) \tag{4}
\end{equation*}
$$

Use this to show that $a^{p} \equiv a(\bmod p)$. Give an example of an integer which satisfies Fermat's Little Theorem but is not prime.
2. Find an example of integers m, n, a, b where $g c d(m, n) \neq 1$ so that $x \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$ has no solutions, and an example of m, n, a, b as above where the system has more than one solution.

Problem 6

Euler's Totient function $\phi(m)$ counts the numbers up to m relatively prime to m. Prove for any prime p :

$$
\begin{equation*}
\phi\left(p^{a}\right)=p^{a}-p^{a-1}=p^{a-1}(p-1)=p^{a}\left(1-\frac{1}{p}\right) \tag{5}
\end{equation*}
$$

Problem 7

By the fundamental theorem of arithmetic, n can be factorized into m prime numbers.

$$
\begin{equation*}
n=\prod_{i=1}^{m} p_{i}^{e_{i}}=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{m}^{e_{m}} \tag{6}
\end{equation*}
$$

Use this to show that for $n \in \mathbb{Z}$ where $n>1$:

$$
\begin{equation*}
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{m}}\right) \tag{7}
\end{equation*}
$$

