Discrete Mathematics

COMS 3203 - Fall 2017
http://www.cs.columbia.edu/~amoretti/3203

Practice Exam \# 1

Solve any four problems for full marks. Good luck and don't panic! If something is taking too long, move on to the next question. Note that this is a sample exam and while it bears some similarity with the real exam, the two are not isomorphic.

Problem 1

Prove the following by induction.

1. State $P(n)$, the base case, inductive hypothesis and inductive step explicitly.

$$
\begin{equation*}
\forall n \in \mathbb{N} \quad \sum_{i=1}^{n} i^{3}=\frac{(n(n+1))^{2}}{4} \tag{1}
\end{equation*}
$$

2. Recall n ! is defined as $n \times(n-1) \times \cdots \times 3 \times 2 \times 1$.

$$
\begin{equation*}
\forall n \in \mathbb{N} \text { such that } n \geq 4 \quad n!>2^{n} \tag{2}
\end{equation*}
$$

3. Prove for all $n \in \mathbb{N}$:

$$
\begin{equation*}
(\cos x+i \sin x)^{n}=\cos (n x)+i \sin (n x) \tag{3}
\end{equation*}
$$

Hint: you may use the angle sum/difference identity $\cos (a \pm b)=\cos (a) \cos (b) \pm \sin (a) \sin (b)$ and $\sin (a \pm b)=\sin (a) \cos (b)+\cos (a) \sin (b)$.

Problem 2

Let \mathbb{R} be the set of real numbers and \mathbb{Z} be the set of integers. Define a relation $x \sim y$ on \mathbb{R} denoted $x R y$ $\forall x, y \in \mathbb{R}$:

$$
\begin{equation*}
x-y \in \mathbb{Z} \tag{4}
\end{equation*}
$$

Recall that an equivalence relation is one that is reflexive, symmetric and transitive. Is the above an equivalence relation? Prove or provide a counter example.

Problem 3

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Prove that their composition $h=(g \circ f): A \rightarrow C$ is a bijection by showing i) h is injective and ii) h is surjective.

Problem 4

Consider the following game between existential and universal quantifiers. The existential player attempts to satisfy all constraints whereas the universal player aims to falsify the constraint. Is there a winning strategy, a way to assign variables such that the expression below is true, regardless of the universal quantifiers?
$\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \forall x_{6} \exists x_{7} \forall x_{8} \exists x_{9}\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{4} \vee \neg x_{5} \vee x_{3}\right) \wedge\left(x_{6} \vee \neg x_{1} \vee x_{7}\right) \wedge\left(x_{2} \vee \neg x_{8} \vee \neg x_{1}\right) \wedge\left(x_{5} \vee x_{6} \vee \neg x_{9}\right)$

Explain.

Problem 5

Recall the Fibonacci numbers were defined:

$$
F_{n}= \begin{cases}1 & n=0 \\ 1 & n=1 \\ F_{n-1}+F_{n-2} & n>1\end{cases}
$$

Denote $\phi=(1+\sqrt{5}) / 2$ and prove that $\forall n \in \mathbb{N}$,

$$
\begin{equation*}
F_{n} \leq \phi^{n} \tag{6}
\end{equation*}
$$

Hint: use strong induction.

Problem 6

Recall that a function is convex if $\forall x_{1}, x_{2} \in X$ and $\forall t \in[0,1]$:

$$
\begin{equation*}
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \tag{7}
\end{equation*}
$$

where the ($\mathrm{n}=2$ above) weights sum to 1 (that is, $t_{1}+\cdots+t_{n}=1$). Prove that if f is convex, then:

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \leq \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{8}
\end{equation*}
$$

Hint: use the AGM inequality or induction.

