
Adaptive Processing of Top-k Queries in XML

Amélie Marian
Columbia University

amelie@cs.columbia.edu

Sihem Amer-Yahia
AT&T Labs–Research

sihem@research.att.com

Nick Koudas
AT&T Labs–Research

koudas@research.att.com

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

Abstract

The ability to compute top-k matches to XML queries is
gaining importance due to the increasing number of large
XML repositories. The efficiency of top-k query evaluation
relies on using scores to prune irrelevant answers as early
as possible in the evaluation process. In this context, evalu-
ating the same query plan for all answers might be too rigid
because, at any time in the evaluation, answers have gone
through the same number and sequence of operations, which
limits the speed at which scores grow. Therefore, adaptive
query processing that permits different plans for different
partial matches and maximizes the best scores is more ap-
propriate. In this paper, we propose an architecture and
adaptive algorithms for efficiently computing top-k matches
to XML queries. Our techniques can be used to evaluate
both exact and approximate matches where approximation
is defined by relaxing XPath axes. In order to compute the
scores of query answers, we extend the traditional tf*idf
measure to account for document structure. We conduct ex-
tensive experiments on a variety of benchmark data and
queries, and demonstrate the usefulness of the adaptive ap-
proach for computing top-k queries in XML.

1. Introduction

The ability to compute top-k answers to XML queries is
gaining importance due to the increasing number of large
XML repositories1. Top-k query evaluation on exact an-
swers is appropriate when the answer set is large and users
are only interested in the highest-quality matches. Top-k
queries on approximate answers are appropriate on struc-
turally heterogeneous data (e.g., querying books from dif-
ferent online sellers). In both cases, an XPath query may
have a large number of answers, and returning all answers to
the user may not be desirable. One of the prominent query-
ing approaches in this case is the top-k approach that lim-
its the cardinality of answers by returning k answers with
the highest scores.

The efficiency of top-k query evaluation relies on us-
ing intermediate answer scores in order to prune irrele-
vant matches as early as possible in the evaluation process.

1 Library of Congress: http://lcweb.loc.gov/crsinfo/xml/
INEX: http://www.is.informatik.uni-duisburg.de/projects/inex03/

In this context, evaluating the same execution plan for all
matches leads to a lock-step style processing which might
be too rigid for efficient query processing. At any time in
the evaluation, answers have gone through exactly the same
number and sequence of operations, which limits how fast
the scores of the best answers can grow. Therefore, adap-
tive query processing that permits different partial matches
to go through different plans is more appropriate. Adaptiv-
ity in query processing has been utilized before [1, 4, 12, 25]
in order to cope with the unavailability of data sources and
varying data arrival rates, by reordering joins in a query
plan. In this paper, we study adaptive techniques for effi-
ciently computing exact and approximate answers to top-k
queries in XML.

In order to compute approximate matches of XPath
queries, we adopt the query relaxation framework de-
fined in [3] where relaxations such as the ones proposed
in [2, 11, 23] can be encoded in the query plan in or-
der to permit structurally heterogeneous answers to match
the original query in addition to exact answers.

Choosing the best k query matches is based on comput-
ing answer scores. Scoring query answers in the context of
XML needs to account for two key aspects: (i) an answer
to an XPath query may be any fragment of the input doc-
ument and, (ii) an XPath query consists of several predi-
cates linking the returned node to other query nodes, instead
of simply “keyword containment in the document”. Exist-
ing efforts in Information Retrieval (IR) such as [15, 24]
have focused on extending the tf*idf (term frequency and
inverse document frequency) measure to return document
fragments. In our work, we extend the tf*idf measure to ac-
count for scoring on both structure and content predicates
and return document fragments.

We make the following contributions:

• We present Whirlpool, a novel architecture incorporat-
ing a family of algorithms for processing top-k queries
on XML documents adaptively.
Whirlpool is used to compute both exact and approx-
imate matches. It is adaptive in permitting partial
matches to the same query to follow different execu-
tion plans, taking the top-k nature of our problem into
account. The key features of Whirlpool are: (a) a par-
tial match that is highly likely to end up in the top-k
set is processed in a prioritized manner, and (b) a par-
tial match unlikely to be in the top-k set follows the
cheapest plan that enables its early pruning.

book

publisher

info

book

publisher

(c)(b)(a)

info

(psmith)

title
(wodehouse)

price
(48.95)(1234)(psmith)

name

(wodehouse)
title

location isbn
(1234)
isbn

(london)

(48.95)title
(wodehouse)

isbn

name
(london)
location

(1234)

price

info

reviews

book

Figure 1. Heterogeneous XML Database Example

• We propose a novel scoring function for XML, in-
spired by tf*idf .

• We instantiate the Whirlpool strategy for a variety of
routing alternatives (i.e., which operation does a par-
tial match go through next?), and prioritization alter-
natives (i.e., given a number of partial matches waiting
for a specific operation, how do we prioritize them?),
to obtain a family of adaptive evaluation algorithms.

• We describe a real prototype, in which we imple-
mented the Whirlpool architecture and algorithms.
We perform a detailed experimental evaluation of our
algorithms on a variety of benchmark data sets and
queries, and (i) identify the tradeoffs between the dif-
ferent routing and prioritization alternatives among the
Whirlpool algorithms, (ii) demonstrate that adaptivity
pays off in processing top-k queries, and (iii) validate
our scoring function.

To the best of our knowledge, this is the first work that
explores per-answer adaptive evaluation strategies for com-
puting top-k answers to XML queries.

The paper is organized as follows. Section 2 contains a
motivating example for relaxation and adaptivity. Section 3
contains a summary of related work. Section 4 presents our
scoring function. Section 5 describes the Whirlpool archi-
tecture and algorithms. Extensive experiments are given in
Section 6. Finally, we conclude in Section 7.

2. Motivating Example

Relaxation: We consider a data model for XML where in-
formation is represented as a forest of node labeled trees. A
simple database instance, containing a heterogeneous col-
lection of books, is given in Figure 1. We represent XML
queries as tree patterns, an expressive subset of XPath. Fig-
ure 2 contains examples of XPath queries and their corre-
sponding tree pattern. A tree pattern is a rooted tree where
nodes are labeled by element tags, leaf nodes are labeled
by tags and values and edges are XPath axes (e.g., pc for
parent-child, ad for ancestor-descendant). The root of the
tree (shown in a solid circle) represents the returned node.

Different queries would match different books in Fig-
ure 1. For example, the query in Figure 2(a) would match
book 1(a) exactly, but would neither match book 1(b) (since
publisher is not a child of info) nor book 1(c) (since
the title is a descendant, not a child, of book, and the

name
(psmith)

title
(wodehouse)(wodehouse)

pc

info

book

pc

./info/publisher/name = ’psmith’]

title
publisher

ad

/book[.//title = ’wodehouse’ and

ad

publisher

book

ad

pc

(c)

/book[.//title = ’wodehouse’ and
.//publisher/name = ’psmith’]

ad

(d)

/book[.//title = ’wodehouse’]

bookpc

(a)

./info/publisher/name = ’psmith’]

pc

/book[./title = ’wodehouse’ and

info

book

(wodehouse)
title

(psmith)
name

pc

(b)

publisher

pc

pc

title

(psmith)
name

(wodehouse)

Figure 2. Query Tree Patterns and Relaxations

publisher information is entirely missing). However, in-
tuitively, it makes sense to return all three books as candi-
date matches, suitably ranked based on the extent of simi-
larity of the books to the query in Figure 2(a).

In order to allow for such approximate answers, we adopt
query relaxation as defined in [2, 11, 23] and formalized
in [3]. We use three specific relaxations (or any composi-
tion of these relaxations): edge generalization (replacing a
pc edge with ad), leaf deletion (making a leaf node op-
tional) and subtree promotion (moving a subtree from its
parent node to its grand-parent). These relaxations capture
approximate answers but still guarantee that exact matches
to the original query continue to be matches to the relaxed
query. For example, the query in Figure 2(b) can be obtained
from the query 2(a) by applying edge generalization to the
edge between book and title. The query in Figure 2(c) is
obtained from query 2(a) by composing subtree promotion
(applied to the subtree rooted at publisher) followed by
leaf deletion applied to info, and edge generalization ap-
plied to the edge between book and title. Finally, query
2(d) is obtained from query 2(c) by applying leaf deletion
on name then on publisher.

As a result, while queries 2(a) and 2(b) match the book
in Figure 1(a) only, query 2(c) matches both book 1(a) and
book 1(b) and query 2(d) matches all three books.

Exact matches to a relaxed query are the desired approx-
imate answers to the original user query. In order to distin-
guish between different answers, we need to compute scores
that account for query relaxation. We focus on this issue in
Section 4. For now, we assume that scores are given and mo-
tivate the need for adaptive query processing.

Adaptivity: Suppose now that we are interested in evalu-
ating a query that looks for the top-1 book with a title,
a location and a price, all as children elements. Obvi-
ously, without applying query relaxation, this query would
be empty if it is evaluated on our three books in Figure 1.
Similarly to [2], we use a left-deep outer-join plan that en-
codes edge generalizations and subtree promotions in the
query. Leaf nodes in the plan are query nodes and join pred-
icates correspond to pc and ad edges in the query tree. Let
us assume that we evaluate the query on our book collec-
tion enhanced with an additional book (d) having three ex-
act matches for title, each one of them with a score equal
to 0.3, five approximate matches for location where ap-
proximate scores are 0.3, 0.2, 0.1, 0.1, and 0.1, and one ex-
act match for price with score 0.2. These scores are as-
sociated with the corresponding join predicate. Each book

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

CurrentTopK

N
um

be
r

of
 o

pe
ra

tio
ns

Plan 1 Plan 2 Plan 3
Plan 4 Plan 5 Plan 6

Figure 3. Adaptivity Example.

generates multiple tuples in the join plan (one for each com-
bination of book, title, location and price). Thus, the
score of a tuple is the sum of the individual predicate scores.

For simplicity, we focus only on the computation of tu-
ples for book 1(d). During the evaluation of book (d), some
tuples may be pruned based on their scores and the score of
the current kth best answer (currentTopK). This value de-
pends on the values of previously computed tuples. There-
fore, the number of pruned tuples at each step depends on
previously computed tuples.

We consider six join plans that correspond to all permu-
tations of title, location and price assuming that the
root node book, is always evaluated first. Figure 3 shows
the performance of each plan with increasing values of
currentTopK. The performance is measured in terms of
the total number of join operations (i.e., join predicate com-
parisons). The figure shows that no plan is the best (even
with a small number of generated tuples – 15 tuples in
this example). When currentTopK < 0.6, the best plan
is Plan 6 (join book with price then with title then
with location). However, when 0.6 ≤ currentTopK ≤
0.7, the best plan is Plan 5 (join book with price then
location then title). Finally, when currentTopK >
0.7, Plans 4 (join book with location then price then
title) and 3 (join book with location then title then
price) are both best. Interestingly, Plans 3 and 4 are by
far the worst if currentTopK ≤ 0.5, but become the
best later on, and Plan 6 becomes bad for higher values
of currentTopK. Intuitively, joining book with location

first creates the largest number of intermediate tuples (5),
which is why Plans 3 and 4 are bad for low values of
currentTopK. However, since location has only approx-
imate matches, when currentTopK is high, the tuples gen-
erated from the join with location can be pruned faster,
leading to fewer alive intermediate tuples.

Since the value of currentTopK changes during query
evaluation, static join ordering (akin to selectivity-based op-
timization) would not be optimal. Query evaluation should
dynamically decide which join predicate to consider next
for a given tuple based on the value of currentTopK us-
ing adaptive query processing.

3. Related Work

Several query evaluation strategies have been proposed
for XPath. Prominent among them are approaches that ex-
tend binary join plans, and rely on a combination of index
retrieval and join algorithms using specific structural (XPath
axes) predicates [19]. In this paper, we adopt a similar ap-
proach for computing exact query answers.

Several query relaxation strategies have been proposed
before. In the context of graphs, Kanza and Sagiv [18] pro-
posed mapping query paths to database paths, so long as
the database path includes all the labels of the query path;
the inclusion need not be contiguous or in the same order
which bears some similarities to edge generalization with
subtree promotion. Rewriting strategies [9, 11, 15, 23] enu-
merate possible queries derived by transformation of the ini-
tial query. Data-relaxation [10] computes a closure of the
document graph by inserting shortcut edges between each
pair of nodes in the same path and evaluating queries on this
closure. Plan-relaxation [2] encodes relaxations in a single
binary join plan (the same as the one used for exact query
evaluation). This encoding relies on (i) using outer-joins in-
stead of inner-joins in the plan (e.g., to encode leaf dele-
tion), and (ii) using an ordered list of predicates (e.g., if not
child, then descendant) to be checked, instead of checking
just a single predicate, at each outer-join. Outer-join plans
were shown to be more efficient than rewriting-based ones
(even when multi-query evaluation techniques were used),
due to the exponential number of relaxed queries [2, 3]. In
this paper, we use outer-join plans for computing approxi-
mate matches.

In relational databases, existing work has focused on ex-
tending the evaluation of SQL queries for top-k processing.
None of these works follows an adaptive query evaluation
strategy. Carey and Kossmann [6] optimize top-k queries
when the scoring is done through a traditional SQL order-
by clause, by limiting the cardinality of intermediate resuls.
Other works [5, 8, 16] use statistical information to map
top-k queries into selection predicates which may require
restarting query evaluation when the number of answers is
less than k.

Over multiple repositories in a mediator setting, Fagin et
al. propose a family of algorithms [13, 14], which can evalu-
ate top-k queries that involve several independent “subsys-
tems,” each producing scores that are combined using ar-
bitrary monotonic aggregation functions. These algorithms
are sequential in that they completely “process” one tuple
before moving to the next tuple.

The Upper [20] and MPro [7] algorithms show that inter-
leaving probes on tuples results in substantial savings in ex-
ecution time. In addition, Upper [20] uses an adaptive per-
tuple probe scheduling strategy, which results in additional
savings in execution time when probing time dominates
query execution time. These techniques differ from our ap-
proach in that all information on a tuple is retrieved through
a unique tuple ID, whereas our operations are outer-joins
that spawn one or more result tuples. Chang and Hwang [7]
suggested an extension to MPro that evaluates joins as carte-
sian products, thus requiring to process a potentially huge

number of tuples. In contrast, our model allows for evalua-
tion of all results of a join at once.

Top-k query evaluation algorithms over arbitrary joins
have been presented for multimedia applications [21] and
relational databases [17] but their ranking function com-
bines individual tuple scores, whereas, in our scenario, the
score of a top-k answer depends on the join predicate (e.g.,
child or descendant) used to produce the XPath approxi-
mate match (Section 4). Thus, a given node participates dif-
ferently to the final score of the approximate answers it is
joined with, depending on how good a match it is. In addi-
tion, existing top-k join algorithms require join inputs to be
sorted, which is not the case in our setup.

Recently [19], top-k keyword queries for XML have
been studied via proposals extending the work of Fagin
et al., [13, 14] to deal with a bag of single path queries.
Adaptivity and approximation of XML queries are not ad-
dressed in this work. Finally, in [2], the goal was to iden-
tify all answers whose score exceeds a certain threshold (in-
stead of top-k answers). Early pruning was performed using
branch-and-bound techniques. The authors explored a lock-
step adaptive processing for relaxed XML queries while the
present work explores adaptivity on a per-answer basis.

While our idea of adaptive evaluation is similar to [4],
we use adaptivity in the context of exact and approximate
XML queries and focus on issues such as exploring differ-
ent routing strategies (Section 6) that are appropriate when
pruning intermediate query answers for top-k evaluation.

4. Scoring Function

The traditional tf*idf function is defined in IR, on key-
word queries against a document collection. This function
takes into account two factors: (i) idf, or inverse document
frequency, quantifies the relative importance of an individ-
ual keyword (i.e., query component) in the collection of
documents (i.e., candidate answers); and (ii) tf, or term fre-
quency, quantifies the relative importance of a keyword (i.e.,
query component) in an individual document (i.e., candi-
date answer). In the vector space model in IR [22], query
keywords are assumed to be independent of each other, and
the tf*idf contribution of each keyword is added to com-
pute the final score of the answer document.

In this section, we present a conservative extension of the
tf*idf function to XPath queries against XML documents.
The first point to note is that, unlike traditional IR, an an-
swer to an XPath query need not be an entire document, but
can be any node in a document. The second point is that an
XPath query consists of several predicates linking the re-
turned node to other query nodes, instead of simply “key-
word containment in the document” (as in IR). Thus, the
XML analogs of idf and tf would need to take these two
salient points into consideration.

Existing efforts in IR [15, 24] have focused on extending
tf*idf to return document fragments (instead of whole doc-
uments). In [24], the authors consider the use of semantic
ontologies to compute scores on content predicates. In our
work, we focus on a scoring method that combines predi-

cates on both structure and content. Considering ontologies
on content is beyond the scope of this paper.

Definition 4.1 [XPath Component Predicates] Consider
an XPath query Q, with q0 denoting the query answer node,
and qi, 1 ≤ i ≤ `, denoting the other query nodes. Let
p(q0, qi) denote the XPath axis between query nodes q0 and
qi, i ≥ 1. Then, the component predicates of Q, denoted
PQ, is the set of predicates {p(q0, qi)}, 1 ≤ i ≤ `.

For example, the component predicates of
the XPath query/a[./b and ./c[.//d
and following-sibling::e]] is the set
{a[parent::doc-root], a[./b], a[./c],
a[.//d],a[./e]. The component predicates pro-
vide a unique decomposition of the query into a set of
“atomic predicates”. This is akin to decomposing a key-
word query in IR into a set of individual “keyword contain-
ment predicates”.

Definition 4.2 [XML idf] Given an XPath query compo-
nent predicate p(q0, qi), and an XML database D, p’s idf
against D, idf(p(q0, qi), D), is given by:

log(
| {n ∈ D : tag(n) = q0} |

| {n ∈ D : tag(n) = q0&(∃n′ ∈ D : tag(n′) = qi&p(n,n′))} |
)

Intuitively, the idf of an XPath component predicate
quantifies the extent to which q0 nodes in the database D
additionally satisfy p(q0, qi). The fewer q0 nodes that sat-
isfy predicate p(q0, qi), the larger is the idf of p(q0, qi). This
is akin to the case in IR: the fewer the documents that con-
tain keyword ki, the larger is ki’s idf .

Definition 4.3 [XML tf] Given an XPath query compo-
nent predicate p(q0, qi), and a node n ∈ D with tag q0, p’s
tf against node n, tf(p(q0, qi), n), is given by:

| {n′ ∈ D : tag(n′) = qi&p(n,n′)} |

Intuitively, the tf of an XPath component predicate p
against a candidate answer n ∈ D quantifies the number of
distinct ways in which n satisfies predicate p. This is again
akin to the case in IR: the more the number of occurrences
of keyword ki in a document dj , the larger is the term fre-
quency of ki in dj .

Definition 4.4 [XML tf*idf Score] Given an XPath query
Q, let PQ denote Q’s set of component predicates. Given an
XML database D, let N denote the set of nodes in D that
are answers to Q. Then the score of answer n ∈ N is given
by:

Σpi∈PQ
(idf(pi,D) ∗ tf(pi, n))

Note that, in defining the tf*idf score of an XPath query
answer, we closely followed the vector space model of IR in
assuming independence of the query component predicates.
A key advantage of this approach, as we shall see later, is
the ability to compute this score in an incremental fashion
during query evaluation. More sophisticated (and complex)

info server

publisher server

Set
Top−K

Router

title (wodehouse) server

book server

name (psmith) server

Figure 4. The Whirlpool Architecture

scores are possible if the independence assumption is re-
laxed, as in probabilistic IR models [22]. We do not pursue
that avenue further in this paper.

As defined, different exact answers to an XPath query
may also end up with different scores. This is no different
from the IR case of having different documents that contain
each of the query keywords having different scores. Once
XPath query relaxations are permitted, an approximate an-
swer to the original query Q is simply an exact answer to
a relaxed query Q′ of Q. Thus, our tf*idf mechanism suf-
fices to score approximate answers to Q as well.

5. Whirlpool

We first describe the overall Whirlpool architecture and
then present our adaptive top-k processing algorithms.

5.1. Architecture

Intuitively, the Whirlpool approach is an evaluation strat-
egy of controlled chaos, which is extremely effective in
cheaply and quickly identifying the top-k answers to re-
laxed XPath queries. The “chaos” is a consequence of per-
mitting the possibility of different evaluation plans for dif-
ferent partial matches; this is in sharp contrast to the lock-
step approach, where each partial match goes through the
same sequence of operations. The “control” comes from
making cost-based decisions, instead of choosing random
evaluation plans.

The key components of the Whirlpool architecture are
depicted in Figure 4, specialized for the XPath query in Fig-
ure 2(a), and its relaxations. These include servers, server
queues, the top-k set, the router and router queue.

Servers and Server Queues. At the heart of adaptive query
evaluation are servers, one for each node in the XPath tree

pattern. Figure 4 depicts five servers, labeled with the query
node labels.

One of these servers, the book server, is special in that it
generates candidate matches to the root of the XPath query,
which initializes the set of partial matches that are adap-
tively routed through the system.

Each of the other servers, e.g., the publisher server,
maintains a priority queue of partial matches (none of
which have previously gone through this server). For each
partial match at the head of its priority queue, it (i) com-
putes a set of extended (partial or complete) matches, each
of which extends the partial match with a publisher node
(if any) that is consistent with the structure of the queries,
(ii) computes scores for each of the extended matches,
(iii) determines if the extended match influences or is influ-
enced by the top-k set.

Top-k Set. The system maintains a candidate set of
top-k (partial or complete) matches, along with their
scores, as the basis for determining if a newly com-
puted partial match, (i) updates the score of an exist-
ing match in the set, or (ii) replaces an existing match
in the set, or (iii) is pruned, and hence not consid-
ered further. Note that only one match with a given root
node is present in the top-k set as the k returned an-
swers must be distinct instantiations of the query root
node. Matches that are complete are not processed fur-
ther, whereas partial matches that are not pruned are sent to
the router.

Router and Router Queue. The matches generated from
each of the servers, and not pruned after comparison with
the top-k set, are sent to the router, which maintains a queue
based on the maximum possible final scores of the partial
matches (Section 6.1.3) over its input. For the partial match
at the head of its queue, the router makes the determination
of the next server that needs to process the partial match,
and sends the partial match to the queue of that server.

The top-k answers to the XPath query, along with their
scores, are known when there are no more partial matches
in any of the server queues, the router queue, or being com-
pared against the top-k set.

5.2. Algorithms

We first describe how each server processes its input and
then, we explain the overall top-k query processing.

5.2.1. Server Query Processing. Each server han-
dles two distinct sources of complexity:

Query relaxations: A consequence of permitting XPath
query relaxations is that the predicates at a server can in-
volve a variety of nodes.

For example, given the query in Figure 2(a), and its
Whirlpool architecture of Figure 4, the server correspond-
ing to publisher needs to check predicates of the form
pc(info, publisher) and pc(publisher, name) for the
exact query. Supporting edge generalization on the edges

Algorithm 1 Server Predicates Generation
Require: Query Q, Query Node n {n is current server node}

1: Relaxation with rootNode = getComposition(n, rootNode(Q));
2: structuralPredicate = Relaxation with rootNode;
3: for each Node n’ in Q do
4: {isDescendant(a,b) evaluates to true if a descendant of b};
5: if (isDescendant(n’,n)) then
6: Relaxation with serverNode = getComposition(n, n’);
7: conditionalPredicate+=Relaxation with serverNode;
8: end if
9: if (isDescendant(n, n’) AND notRoot(n’)) then

10: Relaxation with serverNode = getComposition(n’, n);
11: conditionalPredicate+=Relaxation with serverNode;
12: end if
13: end for

(info, publisher) and (publisher, name) would re-
quire checking for the predicates ad(info, publisher)
and ad(publisher, name). Allowing for subtree promo-
tion on the subtree rooted at publisher would require
checking for the predicate ad(book, publisher). Fi-
nally, the possibility of leaf node deletions means that
the predicate comparing publisher with name is op-
tional.

Adaptive query processing. Static evaluation strategies
guarantee that all partial matches that arrive at a server
have gone through exactly the same server operations. With
adaptive strategies, different partial matches may have gone
through different sets of server operations, and hence may
have different subsets of query nodes instantiated.

For example, given the query in Figure 2(a), partial
matches arriving at the publisher server may have previ-
ously gone through any of the other servers; only the node
corresponding to the query root is guaranteed to be present.
Dealing with each of the exponential number of possible
cases separately would be very inefficient from the point of
view of query processing.

Therefore, we use Algorithm 1 to generate the set of
predicates to be checked for a partial match arriving at each
server.

First, given a partial match at the head of the input queue,
the server uses an index to quickly locate all matches at that
server node that satisfy the relaxation of the predicate re-
lating to the query root node of the partial match (which is
guaranteed to be present) with the server node in the orig-
inal XPath query. This predicate is obtained by composing
the labels on the edges along the path from the server node
to the root in the query.

Second, each element identified in the first step is com-
pared with the input partial match by using a conditional
predicate sequence. Such a sequence is created by exam-
ining the relationship between the server node and nodes
that are either its ancestors or descendants in the original
XPath query pattern. The predicates are obtained by com-
posing the labels on the edges from the server node to the
query tree node. For any node ni of the partial match that
corresponds to a query node represented in the conditional
predicate sequence, we then check for validation of the re-
laxation of the conditional predicate with the server node n
(i.e., publisher in the example). If it is validated, we check
whether it is an exact predicate validation. This approach of
using conditional predicate sequences at server nodes also

Algorithm 2 Whirlpool
Require: Query Q, k

1: relaxedQ = relax(Q);
2: plan = generateJoinPlan(relaxedQ);
3: rootN = rootNode(plan);
4: routerQueue = evaluate(rootN);
5: servers = nonRootNodes(plan);
6: for each server S in servers do
7: queueAtS = evaluate(S);
8: serverQueues += queueAtS;
9: end for

10: while (nonEmpty(routerQueue)OR(nonEmpty(serverQueues))) do
11: answer = nextAnswer(routerQueue);
12: sendToNextServer(answer);
13: for each server S in servers do
14: answerAtS = nextAnswerAtS(queueAtS);
15: computeJoinAtS(answerAtS);
16: checkTopK(topKSet,answerAtS);
17: if aliveAtS(topKSet,answerAtS) then
18: backToRouter(answerAtS);
19: serverQueues -= answerAtS;
20: end if
21: end for
22: end while
23: return topKSet;

enables incremental assignment of updated scores with ex-
tensions to the input partial match.

5.2.2. Top-k Query Processing. We synthesize two ap-
proaches for top-k query evaluation:

Lock-step: This algorithm is similar to the one proposed
in [2]. Different variations of the lock-step algorithms can
be obtained by varying the components implementations
(Section 6.1).

Whirlpool: Algorithm 2 shows the top-k evaluation algo-
rithm that is instantiated by Whirlpool. A few functions are
worth highlighting in this algorithm: nextAnswer imple-
ments the router decision for picking the next answer ac-
cording to some policy; sendToNextServer implements a
routing decision (see Section 6.1.4 for implementation al-
ternatives); nextAnswerAtS implements the priority queue
strategy at each server (see Section 6.1.3 for implementation
alternatives); computeJoinAtS computes the join predi-
cates at a server. This function can implement any join algo-
rithm. Finally, checkTopK checks if a partial match needs
to be discarded or kept using its current score and decides
to update the top-k set accordingly.

6. Experimental Evaluation

We now discuss the implementation of each component
in the Whirlpool architecture. Then, we describe our exper-
imental settings, and present the experimental results.

6.1. Implementation Alternatives

In this section, we discuss Whirlpool’s choices for prior-
ity queues and routing decisions.

6.1.1. Scheduling between components. There are two
overall scheduling possibilities:

Single-threaded: The simplest alternative is to have a
single-threaded implementation of all the components

in the system. This would permit having complete con-
trol over which server processes next the partial match at
the head of its input priority queue.

Multi-threaded: One can allocate a thread (or more) to
each of the servers, as well as to the router, and let the sys-
tem determine how to schedule threads. The use of priority
queues (Section 6.1.3) and adaptive routing strategies (Sec-
tion 6.1.4) permits “control” of query evaluation. In addi-
tion, by using different threads, Whirlpool is able to take
advantage of available parallelism.

6.1.2. Evaluation Algorithms.

Whirlpool-M: Our multi-threaded variation of Whirlpool.
Each server is handled by an individual thread. In addition
to server threads, a thread handles the router, and the main
thread checks for termination of top-k query execution.

Whirlpool-S: The single-threaded scheduling variation of
Whirlpool. Due to the sequential nature of Whirlpool-S, we
slightly modified Whirlpool’s architecture (Figure 4) in our
implementation of Whirlpool-S: a partial match is processed
by a server as soon as it is routed to it, therefore the servers’
priority queues are not needed, and partial matches are only
kept in the router’s queue. Note that Whirlpool-S bears some
similarities to both Upper [20] and MPro [7]. As in both
techniques, partial matches are considered in the order of
their maximum possible final score. In addition, as in Up-
per, partial matches are routed to the server using an adap-
tive technique. While Upper does not consider join evalu-
ation, MPro use a join evaluation based on Cartesian prod-
uct and individual evaluation of each join predicate score. In
contrast, our techniques use a different model for join eval-
uation where one single operation produces all valid join re-
sults at once.

LockStep: LockStep considers one server at a time and pro-
cesses all partial matches sequentially through a server be-
fore proceeding to the next server. Our default implemen-
tation of LockStep keeps a top-k set based on the current
scores of partial matches, and discards partial matches dur-
ing execution. We also considered a variation of LockStep
without pruning during query execution, LockStep-NoPrun,
where all partial match operations are performed, scores for
all matches are computed, and matches are then sorted at
the end so that the k best matches can be returned. Note
that the LockStep algorithm is very similar to the OptThres
algorithm presented in [2]. The relaxation adaptivity of Opt-
Thres, which decides whether a partial match will be con-
sidered for relaxation depending on its score, is included in
the default server implementation of Whirlpool.
6.1.3. Priority Queues. Various strategies can be used for
server prioritization:
FIFO: the simplest alternative is to process partial matches
in the queue in their arrival order. This scheme is sensitive
to the actual order in which partial matches are processed,
and performance may vary substantially.
Current score: partial matches with higher current scores
will be moved to the heads of their respective priority
queues. This scheme is sensitive to the order in which par-
tial matches are initially selected to be processed.

Maximum possible next score: the current score of a par-
tial match is added to the maximum possible score it could
receive from its current server, and partial matches with
higher maximum possible next scores will be moved to
the heads of their respective priority queues. This scheme
adapts to the score that the current server could contribute
to partial matches, making it less sensitive to the order in
which partial matches are processed.
Maximum possible final score: the maximum possible fi-
nal score determines which partial match to consider next.
This scheme is less sensitive to the order in which par-
tial matches are processed, and is the most adaptive of
our queue prioritization alternatives. Intuitively, this enables
those partial matches that are highly likely to end up in the
top-k set to be processed in a prioritized manner akin to join
ordering. Although not reported due to space constraints,
we verified this conjecture experimentally.

6.1.4. Routing Decisions. Given a partial match at the
head of the router queue, the router needs to make a de-
cision on which server to choose next for the partial match.
Obviously, a partial match should not be sent to a server that
it has already gone through; maintaining a bit vector on the
set of servers, with each partial match is used for this task.
The routing choice could be made a few different ways:

Static: the simplest alternative is to route each partial match
through the same sequence of servers. For homogeneous
data sets, this might actually be the strategy of choice,
where the sequence can be determined a priori in a cost-
based manner.

Score-based: the partial match is routed to the server that
is likely to impact its score the most. Two variations of
this routing technique can be considered: routing the par-
tial match to the server that is likely to increase its score the
most (max score), or the least (min score), based on some
precomputed, or estimated, information.

Size-based: the partial match is routed to the server that is
likely to produce the fewest extended matches, after prun-
ing against the top-k set. The intuition is that the overall cost
of the top-k query evaluation is a function of the number of
partial matches that are alive in the system. The size-based
choice is a natural (simplified) analog of conventional cost-
based query optimization, for the top-k problem, and can
be computed using estimates of the number of extensions
computed by the server for a partial match (such estimates
could be obtained by using work on selectivity estimation
for XML), the range of possible scores of these extensions,
and the likelihood of these extensions getting pruned when
compared against the top-k set.

In Section 6.3.1, we evaluate different partial match rout-
ing strategies for Whirlpool. In Whirlpool-S, the algorithm
always chooses the partial match with the maximum possi-
ble final score as it is the one on top of the router queue. In
addition, it is proven that this partial match will have to be
processed before completing a top-k answer [20]. We tried
several queue strategies for both LockStep and Whirlpool-M
as described in Section 6.1.3. For all configurations tested, a
queue based on the maximum possible final score performed
better than the other queues. This result is in the same spirit

Query Document k Parallelism Scoring
Size Size Function

3 nodes (Q1), 1Mb, 3, 1, 2, 4, ∞ sparse
6 nodes (Q2), 10Mb, 15, dense
8 nodes (Q3) 50Mb 75

Table 1. Evaluation parameters (defaults in bold).

as Upper [20] as it allows for partial matches that are likely
to end up in the top-k set to be processed first. In the re-
mainder of this paper, results that we report for LockStep
and Whirlpool-M techniques assume server queues on max-
imum possible final scores.

6.2. Experimental Setup

We implemented the three top-k query processing strate-
gies in C++, using POSIX threads for Whirlpool-M. We
ran our experiments on a Red Hat 7.1 Linux 1.4GHz dual-
processor machine with a 2Gb RAM and a Sun F15K run-
ning Solaris 8 with with 54 CPUs ranging from 900MHz to
1.2GHz, and 200Gb of RAM.

6.2.1. Data and Queries. We generated several docu-
ments using the XMark document generating tool2. We
then manually created three queries by isolating XPath sub-
sets of XMark queries that illustrate the different relax-
ations.

Q1 : //item[./description/parlist]
Q2: //item[./description/parlist and

./mailbox/mail/text]

Q3:
//item[./mailbox/mail/text[./bold and ./keyword]

and ./name and ./incategory]

Edge generalization is enabled by recursive nodes in the
DTD (e.g., parlist). Leaf node deletion is enabled by
optional nodes in the DTD (e.g., incategory). Finally,
subtree promotion is enabled by shared nodes (e.g., text).

When a query is executed on an XML document, the
document is parsed and nodes involved in the query are
stored in indexes along with their “Dewey” encoding3. Our
server implementation of XPath joins at each server uses a
simple nested-loop algorithm based on Dewey, since we are
not comparing join algorithm performance. We discuss the
effect of server operation time and its tradeoff with adap-
tive scheduling time in Section 6.3.3. Scores for each match
are computed using the scoring function presented in Sec-
tion 4.

6.2.2. Evaluation Parameters (x-axes) We measured the
performance of our techniques for a variety of criteria (sum-
marized in Table 1):
Query size: We consider 3 query sizes: 3 nodes, 6 nodes,
and 8 nodes (see Section 6.2.1). The number of servers is

2 http://monetdb.cwi.nl/xml/index.html
3 http://www.oclc.org/dewey/about/about the ddc.htm

0

5

10

15

20

25

30

35

40

Whirlpool-S Whirlpool-M

Q
u

er
y

E
xe

cu
ti

o
n

 T
im

e

max_score min_score min_alive_partial_matches

Figure 5. Query execution time for Whirlpool-S and
Whirlpool-M, for various adaptive routing strate-
gies.

equal to the number of nodes involved in a query. The num-
ber of partial matches and thus the number of server oper-
ations for a top-k strategy is, in the worst case, exponen-
tial in the number of nodes involved in the query.
Document size: We consider XMark documents of sizes
ranging from 1Mb to 50Mb.
Value of k: We ran experiments for values of k ranging
from 3 to 75. When the value of k increases, fewer par-
tial matches can be pruned.
Parallelism: Our Whirlpool-M approach takes advantage of
multiple available processors. We experimented with this
strategy on different machines offering various levels of par-
allelism (from 1 to 48 processors).
Scoring function: We used the tf*idf scoring function de-
scribed in Section 4. We observed that the tf*idf values gen-
erated for our XMark data set were skewed, with some pred-
icates having much higher scores than others. Given this be-
havior, we decided to synthesize two types of scoring func-
tion based on the tf*idf scores, to simulate different types of
datasets: sparse, where for each predicate, scores are nor-
malized between 0 and 1 to simulate datasets where predi-
cates scores are uniform, and dense, where score normaliza-
tion is applied over all predicates to simulate datasets where
predicate scores are skewed. (The terms sparse and dense
refer to the effect of these functions on the distribution of fi-
nal scores of partial matches.) We also experimented with
randomly generated sparse and dense scoring functions. A
sparse function allows for a few partial matches to have very
high scores, resulting in high kth score values, which en-
ables more pruning. With a dense scoring function, final
scores of partial matches are close to each other, resulting
in less pruning. Using different scoring functions permits to
study the impact of score distribution on our performance
measures. Validating the scoring functions using precision
and recall is beyond the scope of this paper and the sub-
ject of future work.

6.2.3. Evaluation Measures (y-axes). To compare the
performance of the different techniques, we use the follow-
ing metrics:

0

10

20

30

40

50

60

70

80

90

100

LockStep-NoPrun LockStep Whirlpool-S Whirlpool-M

Q
u

er
y

E
xe

cu
ti

o
n

 T
im

e
(i

n
 s

ec
o

n
d

s)

max(STATIC) median(STATIC) min(STATIC) ADAPTIVE

Figure 6. Query execution time for LockStep-
NoPrun, LockStep, Whirlpool-S and Whirlpool-M,
for static and adaptive routing strategies (linear
scale).

Query Execution Time: Overall time needed to re-
turn the top-k answers.
Number of Server Operations: This measure allows us to
evaluate the actual workload of the various techniques, re-
gardless of parallelism.
Number of Partial Matches Created: The fewer the cre-
ated partial matches, the better the top-k query processing
technique is at pruning during query execution.

6.3. Experimental Results

We now present experimental results for our top-k query
evaluation algorithms. We first study various adaptive rout-
ing strategies (Section 6.3.1), and settle on the most promis-
ing one. We then compare adaptive and static strategies
(Section 6.3.2), and show that adaptive routing outperforms
static routing when server operation cost dominates in the
query execution time (Section 6.3.3), and that lock-step
strategies always perform worse than strategies that let par-
tial matches progress at different rates. We study the im-
pact of parallelism (Section 6.3.4) and of our evaluation pa-
rameters (Section 6.3.5) on our adaptive techniques. Finally
(Section 6.3.6), we discuss scalability.

6.3.1. Comparison of Adaptive Routing Strategies.
We study the performance of adaptive routing strate-
gies for our top-k techniques (Section 6.1.4). In par-
ticular, we considered the max score, min score and
min alive partial matches described in Section 6.1.4.

Figure 5 shows the query execution time for Whirlpool-S
and Whirlpool-M for the three routing strategies for the de-
fault setting of Table 1. Choosing servers that increase par-
tial match scores the most (max score) does not result in
fast executions as it reduces the pruning opportunities. In
contrast, a score-based strategy that aims at decreasing par-
tial matches scores (min score) performs reasonably well.
By basing routing decisions on the number of alive partial
matches after the server operation, the size-based strategy
(min alive partial matches) is able to prune more partial

0

5000

10000

15000

20000

25000

30000

LockStep Whirlpool-S Whirlpool-M

N
u

m
b

er
 o

f
S

er
ve

r
O

p
er

at
io

n
s

max(STATIC) median(STATIC) min(STATIC) ADAPTIVE

Figure 7. Number of server operations for Lock-
Step, Whirlpool-S and Whirlpool-M, for static and
adaptive routing strategies (linear scale).

matches, and therefore decrease its workload (number of
server operations), resulting in lower query execution times.
Because min alive partial matches performs better than all
other tested routing strategies over all configurations tested
for our adaptive Whirlpool-S and Whirlpool-M techniques,
we will use min alive partial matches as Whirlpool’s rout-
ing strategy in the rest of this paper.

6.3.2. Adaptive vs. Static Routing Strategies. We now
compare adaptive routing strategies against static ones. Fig-
ures 6 and 7 show the query execution time and the number
of server operations needed for Whirlpool-S and Whirlpool-
M, as well as for both LockStep and LockStep-NoPrun us-
ing the default values in Table 1. For all techniques, we con-
sidered all (120) possible permutations of the static routing
strategy, where all partial matches go through the servers in
the same order. In addition, for Whirlpool-S and Whirlpool-
M, we considered our adaptive strategy (see Section 6.3.1).
For both LockStep strategies, all partial matches have to
go through one server before the next server is considered,
LockStep is thus static by nature. This implementation of
LockStep is similar to the OptThres algorithm presented
in [2].

For all techniques, we report the min, max and median
values for the static routing strategy. A perfect query opti-
mizer would choose the query plan that results in the min
value of the static routing strategy. A first observation from
Figures 6 and 7 is that for a given static routing strategy,
Whirlpool-M is faster than Whirlpool-S, which in turn is
faster than LockStep. Thus, allowing some partial matches
to progress faster than others, by letting them being pro-
cessed earlier by more servers, results in savings in query
execution time and total number of server operations. The
no-pruning version of LockStep is obviously worse than all
other techniques, proving the benefits of pruning when pro-
cessing top-k queries. In addition, for both Whirlpool-S and
Whirlpool-M, we see that our adaptive routing strategy re-
sults in query execution times at least as efficient as the best
of the static strategies. (For dense scoring functions, adap-
tive routing strategies resulted in much better performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.00001 0.0001 0.001 0.01 0.1 1

Time of one operation (in seconds)

R
at

io
 o

f
q

u
er

y
ex

ec
u

ti
o

n
 t

im
e

o
ve

r
th

e
b

es
t

q
u

er
y

ex
ec

u
ti

o
n

 t
im

e
fo

r
L

o
ck

S
te

p
-N

o
P

ru
n

Whirlpool-S ADAPTIVE Whirlpool-S STATIC

LockStep LockStep-NoPrun

Figure 8. Ratio of the query execution time of the
different techniques over LockStep-NoPrun’s best
query execution time, for different join operation
cost values.

than the best static strategy.) Interestingly, for this default
setting, Whirlpool-M performs slightly more server opera-
tions than Whirlpool-S. However, the better performance of
Whirlpool-M is due to its use of parallelism (2 processors
are available on our default machine) to speed up query pro-
cessing time.

Since Whirlpool always outperforms LockStep, and
Whirlpool’s adaptive routing strategy performs as well as
or better than its static one, we will only consider the adap-
tive routing versions of Whirlpool-S and Whirlpool-M in the
rest of this paper. The terms Whirlpool-S and Whirlpool-M
will now refer to their adaptive versions.

6.3.3. Cost of Adaptivity. While adaptivity allows to re-
duce the number of server operations, and therefore leads to
reduction in query processing time, it also has some over-
head cost. In Figure 8, we compare the total query exe-
cution time of Whirlpool-S with both static and adaptive
routing strategies to that of the best LockStep execution
(both with and without pruning). Results are presented rel-
ative to the best LockStep-NoPrun query execution time.
(We do not present results for Whirlpool-M in this sec-
tion as it is difficult to isolate the threading overhead from
the adaptivity overhead.) While for static routing strate-
gies, an adaptive per-tuple strategy (Whirlpool-S-STATIC)
always outperforms the LockStep techniques by about 50%,
the adaptive version of Whirlpool-S performs worse than the
other techniques if server operations are very fast (less than
0.5msecs). For query executions where server operations
take more than 0.5msecs each, Whirlpool-S-ADAPTIVE is
10% faster than its static counterpart. (For larger queries
or documents, the tipping point is lower than 0.5msecs, as
the percentage of tuples pruned as a result of adaptivity in-
creases.) Adaptivity is then useful when server operation
time dominates in the query execution time. However, when
server operations are extremely fast, the overhead of adap-
tivity is too expensive. These results are similar to what was
observed in [12] and [20]. As a final observation, in scenar-

0

1

2

q1 q2 q3

 R
at

io
 o

f
W

h
ir

lp
o

o
l-

M
 q

u
er

y
ex

ec
u

ti
o

n
 t

im
e

o
ve

r
W

h
ir

lp
o

o
l-

S
 q

u
er

y
ex

ec
u

ti
o

n
 t

im
e

1 processor 2 processors 4 processors � processors

Figure 9. Ratio of Whirlpool-M’s query execution
time over Whirlpool-S’s query execution time.

ios where data is stored on disk, server operation costs are
likely to rise; in such scenarios, adaptivity is likely to pro-
vide important savings in query execution times. In the fu-
ture, we plan on performing adaptivity operations “in bulk”,
by grouping tuples based on similarity of scores or nodes,
in order to decrease adaptivity overhead.

In this paper, we present results for the case where join
operations cost around 1.8 msecs each.

6.3.4. Effect of Parallelism. We now study the effect of
parallelism on the query execution time of Whirlpool-M.
Note that in Whirlpool-M, the number of threads is equal
to the number of servers in the query + 2 (router thread
and main thread), thus Whirlpool-M is limited in its par-
allelism. To show the maximum speedup due to parallelism
of Whirlpool-M we performed experiments over an infinite
number of processors. (The actual number of processors
used in the experiment is 54, which is much higher than
the 10 processors that Whirlpool-M would use for Q3.)

Unlike Whirlpool-M, Whirlpool-S is a sequential strat-
egy, thus its execution time is not affected by the avail-
able parallelism. To evaluate the impact of parallelism
on Whirlpool-M execution time, we ran experiments on a
10Mb document for all three queries, using 15 as the value
for k, on four different machines with 1, 2, 4 and ∞ pro-
cessors respectively.4 We then computed the speedup of
Whirlpool-M over the execution time of Whirlpool-S,
and report our results in Figure 9. When there is no par-
allelism, i.e., when the number of available processors
is equal to one, the performance of Whirlpool-M com-
pared to that of Whirlpool-S depends on the query
size: Whirlpool-M can take more than twice the time of
Whirlpool-S for small queries but becomes faster, when par-
allelism is available, for large queries. When multiple pro-
cessors are available, Whirlpool-M becomes faster than
Whirlpool-S, up to 1.5 times faster with two processors, up
to 1.95 times faster with four processors, and up to a maxi-
mum of almost 3.5 times faster when the number of avail-

4 Our 4-processors machine is actually a dual Xeon machine with four
“logical” processors.

0.1

1

10

100

1000

K=3 K=15 K=75 K=3 K=15 K=75 K=3 K=15 K=75

q1 q2 q3

Q
u

er
y

E
xe

cu
ti

o
n

 T
im

e

Whirlpool-M Whirlpool-S

Figure 10. Query execution time for Whirlpool-S
and Whirlpool-M, as a function of k and the query
size (logarithmic scale).

able processors is unlimited. For Q1, Whirlpool-M is not
faster than Whirlpool-S, even when parallelism is avail-
able, as Q1 only has three servers and does not take as much
advantage of parallelism as Q2 and Q3, making the thread-
ing overhead expensive in comparison to the gains of par-
allelism. In addition, Q1 is evaluated faster than Q2 and
Q3, and is thus more penalized by the threading over-
head. For Q2 and Q3, Whirlpool-M takes advantage of par-
allelism, with better results for the larger Q3 than Q2, as it
is a larger query.

The speedup stops increasing when the number of pro-
cessors exceeds the number of threads needed to evaluate
the query. Our example queries do not take advantage of
parallelism greater than the number of servers involved in
the query + 2 (router and main threads). Thus Q1 does not
benefit from more than 5 processors, Q2 from more than 8
processors, and Q3 from more than 10 processors. If more
parallelism is available, we could create several threads for
the same server, thus increasing parallelism even more. This
is the subject of future work.

6.3.5. Varying Evaluation Parameters. We now study
the effect of our parameters from Section 6.2.2.

Varying Query size: Figure 10 shows the query execu-
tion time for both Whirlpool-S and Whirlpool-M for our
three sample queries (Table 1), on a logarithmic scale. The
query execution time grows exponentially with the query
size. Because of the logarithmic scale, the differences be-
tween Whirlpool-S and Whirlpool-M are larger than they
appear on the plot. The difference between Whirlpool-M
and Whirlpool-S query execution time increases with the
size of the query, with Whirlpool-S 20% faster for Q1 and
Whirlpool-M 48% faster for Q3 (k=15), since the thread-
ing overhead has less impact on larger queries.

Varying k: Figure 10 reports the effect of varying the num-
ber of matches returned in the top-k answer. The query exe-
cution time is linear with respect to k. Interestingly, the dif-
ference in query execution time between Whirlpool-S and
Whirlpool-M increases with k. This increase is more signif-

0.01

0.1

1

10

100

1000

10000

1M 10M 50M 1M 10M 50M 1M 10M 50M

q1 q2 q3

Q
u

er
y

E
xe

cu
ti

o
n

 T
im

e

Whirlpool-M Whirlpool-S

Figure 11. Query execution time for Whirlpool-S
and Whirlpool-M, as a function of the document
and query sizes (logarithmic scale, k=15).

icant for larger query sizes, and Whirlpool-M is up to 60%
faster than Whirlpool-S for Q3, k=75. The number of server
operations exhibits a similar behavior (although at a smaller
scale), with 8% fewer server operation for Whirlpool-M
for the Q3, k=75 setting. This is rather counter-intuitive:
[7] proved that sequential top-k algorithms based on prob-
ing the partial match with the highest possible final score,
as does Whirlpool-S, minimizes the total number of oper-
ations with respect to a given routing strategy. Since our
implementations of Whirlpool-S and Whirlpool-M use the
same routing strategy, Whirlpool-S should always perform
fewer server operations. The explanation lies in our adap-
tive routing strategy: min alive partial matches relies on
score estimates, server selectivity and current top-k values
to make its choice. This last parameter, current top-k val-
ues, changes during query execution. Monitoring the execu-
tions of Whirlpool-S and Whirlpool-M show that top-k val-
ues grow faster in Whirlpool-M than in Whirlpool-S, which
may lead to different routing choices for the same partial
match, making the algorithms follow, in effect, different
schedules for the same partial match. By making better rout-
ing choices, Whirlpool-M results in fewer partial matches
being created than Whirlpool-S.

Varying Document Size: Figure 11 reports on the effect
of the XML document size on the query execution time.
The execution time grows exponentially with the document
size; the larger the document, the more partial matches will
have to be evaluated resulting in more server operations
and thus longer query execution times. For a small docu-
ment, the result is quite fast (less than 1.2 sec for all queries
tested), making the threads overhead in Whirlpool-M expen-
sive compared to Whirlpool-S execution time. However, for
medium and large documents, Whirlpool-M becomes up to
92% faster than Whirlpool-S (Q2, 50M document, k=15).

Varying Scoring Function: We experimented with differ-
ent scoring functions: both sparse and dense variations of
the tf*idf scoring function, as well as randomly generated
scoring functions that were designed to have either dense or

Document Size 1M 10M 50M
Q1 100% 93.12% 85.66%
Q2 100% 49.56% 57.66%
Q3 100% 39.59% 31.20%

Table 2. Percentage of partial matches created by
Whirlpool-M, as a function of the maximum possi-
ble number of partial matches, for different query
and doc. sizes.

sparse properties. We observed that sparse scoring functions
lead to faster query execution times (due to faster pruning).
In contrast, with dense scoring functions, the relative dif-
ferences between Whirlpool-M and Whirlpool-S is greater
with Whirlpool-M resulting in greater savings in terms of
query processing time, number of server operations and par-
tial matches created, over Whirlpool-S.

6.3.6. Scalability. A top-k processing technique over
XML documents has to deal with the explosion of par-
tial matches that occurs when query and document sizes
increase. To measure the scalability of Whirlpool, we con-
sidered the number of partial matches created during
query execution, as a ratio of the maximum possible num-
ber of such partial matches. The total number of par-
tial matches is obtained by running an algorithm with no
pruning (LockStep-NoPrun). Table 2 shows that the per-
centage of total possible partial matches created by
Whirlpool-M significantly decreases with the docu-
ment and query sizes. The benefits of pruning are modest
for small queries. While all partial matches are cre-
ated for Q1, for which tuples generated by the root server
do not create “spawned” tuples in the join servers, prun-
ing allows to reduce the number of operations of these
partial tuples. For large queries (Q3), Whirlpool-M evalu-
ates less than 40% of the partial matches on the 10M doc-
ument, and less than 32% on the 50M document. By
pruning partial matches based on score information,
Whirlpool-M (and Whirlpool-S) exhibits good scalabil-
ity in both query and document size.

7. Conclusion

In this paper, we presented Whirlpool, an adaptive eval-
uation strategy for computing exact and approximate top-k
answers of XPath queries. Our results showed that adap-
tivity is very appropriate for top-k queries in XML. We
observed that the best adaptive strategy focuses on mini-
mizing the intermediate number of alive partial matches;
this is analogous to traditional query optimization in
RDBMS, where the focus is on minimizing intermediate ta-
ble sizes. By letting partial matches progress at different
rates, Whirlpool results in faster query execution times. In
addition, Whirlpool scales well when query and document
sizes increase. While the focus in this paper is not on eval-
uating XPath scoring functions, we show that Whirlpool
adapts itself to environments where scores of interme-

diate answers are either sparse or dense. We studied the
effect of parallelism on our Whirlpool approaches and ob-
served that although Whirlpool-M is better for most cases,
if parallelism is not available, or if query or document
size is small, Whirlpool-M threading overhead may re-
sult in decreased performance. In contrast, for large queries
and documents, Whirlpool-M exploits available paral-
lelism and results in significant savings in query execution
time over Whirlpool-S. We are investigating new direc-
tions such as increasing the number of threads per server
for maximal parallelism.

References

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, N. Tatbul and S. Zdonik Aurora: A New Model
and Architecture for Data Stream Management. VLDB Journal 2003,
120-139.

[2] S. Amer-Yahia, S. Cho, D. Srivastava. Tree pattern relaxation. EDBT
2002.

[3] S. Amer-Yahia, L. Lakshmanan, S. Pandit. FleXPath: Flexible Struc-
ture and Full-Text Querying for XML. SIGMOD 2004.

[4] R. Avnur, J. Hellerstein. Eddies: Continuously Adaptive Query Pro-
cessing. SIGMOD 2000.

[5] N. Bruno, S. Chaudhuri, L. Gravano. Top-k Selection Queries Over
Relational Databases: Mapping Strategies and Performance Evalua-
tion. ACM Transactions on Database Systems (TODS), 27(2), 2002.

[6] M. J. Carey, D. Kossmann. On Saying “Enough Already!” in SQL.
SIGMOD 1997.

[7] K. C.-C. Chang, S.-W. Hwang. Minimal Probing: Supporting Expen-
sive Predicates for Top-K Queries. SIGMOD 2002.

[8] C. Chen, Y. Ling. A Sampling-Based Estimator for Top-K Query.
ICDE 2002.

[9] T. T. Chinenyanga, N. Kushmerick. Expressive and Efficient Ranked
Querying of XML Data. WebDB 2001.

[10] E. Damiani, N. Lavarini, S. Marrara, B. Oliboni, D. Pasini, L. Tanca,
G. Viviani. The APPROXML Tool Demonstration. EDBT 2002.

[11] C. Delobel, M.C. Rousset. A Uniform Approach for Querying
Large Tree-structured Data through a Mediated Schema. Interna-
tional Workshop on Foundations of Models for Information Integra-
tion (FMII-2001). Viterbo, Italy.

[12] A. Deshphande. An Initial Study of the Overheads of Eddies. SIG-
MOD Record Feb. 2004.

[13] R. Fagin, A. Lotem, M. Naor. Optimal Aggregation Algorithms for
Middleware. PODS 2001.

[14] R. Fagin. Combining Fuzzy Information from Multiple Systems.
PODS 1996.

[15] N. Fuhr, K. Grossjohann. XIRQL: An Extension of XQL for Infor-
mation Retrieval. ACM SIGIR Workshop on XML and Information
Retrieval. Athens, Greece, 2000.

[16] V. Hristidis, N. Koudas, Y. Papakonstantinou. PREFER: A system
for the Efficient Execution Of Multiparametric Ranked Queries. SIG-
MOD 2001.

[17] I. F. Ilyas, W. G. Aref, A. K. Elmagarmid. Supporting Top-k Join
Queries in Relational Databases. VLDB 2003.

[18] Y. Kanza, Y.Sagiv. Flexible Queries over Semistructured Data.
PODS 2001.

[19] R. Kaushik, R. Krishnamurthy, J. Naughton and R. Ramakrishnan.
On the Integration of Structure Indices and Inverted Lists. SIGMOD
2004.

[20] A. Marian, N. Bruno, L. Gravano. Evaluating Top-k Queries over
Web-Accessible Databases. ACM Transactions on Database Sys-
tems (TODS), 29(2), 2004.

[21] A. Natsev, Y. Chang, J. R. Smith, C. Li, J. S. Vitter. Supporting In-
cremental Join Queries on Ranked Inputs. VLDB 2001.

[22] G. Salton and M. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill, 1983

[23] T. Schlieder. Schema-driven evaluation of approximate tree-pattern
queries. EDBT 2002.

[24] A. Theobald, G. Weikum. The index-based XXL search engine for
querying XML data with relevance ranking. EDBT 2002.

[25] T. Urhan and M. Franklin. Cost-Based Query Scrambling for Initial
Query Delays SIGMOD 1998, 130-141.

